Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Natali, F.

  • Google
  • 3
  • 23
  • 118

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Polystyrene perturbs the structure, dynamics, and mechanical properties of DPPC membranes: An experimental and computational study32citations
  • 2011Electronic structure of EuN: Growth, spectroscopy, and theory43citations
  • 2011Electronic structure of EuN: Growth, spectroscopy, and theory43citations

Places of action

Chart of shared publication
V., Cadario M.
1 / 1 shared
Bochicchio, D.
1 / 3 shared
Cantu, L.
1 / 1 shared
Monticelli, L.
1 / 1 shared
Rossi, G.
1 / 37 shared
Del Favero, E.
1 / 1 shared
Palchetti, L.
1 / 1 shared
Svane, A.
1 / 7 shared
Richter, J. H.
2 / 4 shared
Smith, K. E.
2 / 9 shared
Simpson, M.
2 / 2 shared
Ruck, B. J.
2 / 5 shared
Trodahl, H. J.
2 / 5 shared
Azeem, M.
2 / 6 shared
Chen, B.
2 / 43 shared
Tadich, A.
2 / 3 shared
Lambrecht, W. R. L.
2 / 3 shared
Plank, N. O. V.
2 / 4 shared
Mcnulty, J.
2 / 3 shared
Preston, A. R. H.
2 / 3 shared
Cowie, B.
2 / 2 shared
Svane, Axel
1 / 11 shared
Van Schilfgaarde, Mark
1 / 24 shared
Chart of publication period
2022
2011

Co-Authors (by relevance)

  • V., Cadario M.
  • Bochicchio, D.
  • Cantu, L.
  • Monticelli, L.
  • Rossi, G.
  • Del Favero, E.
  • Palchetti, L.
  • Svane, A.
  • Richter, J. H.
  • Smith, K. E.
  • Simpson, M.
  • Ruck, B. J.
  • Trodahl, H. J.
  • Azeem, M.
  • Chen, B.
  • Tadich, A.
  • Lambrecht, W. R. L.
  • Plank, N. O. V.
  • Mcnulty, J.
  • Preston, A. R. H.
  • Cowie, B.
  • Svane, Axel
  • Van Schilfgaarde, Mark
OrganizationsLocationPeople

article

Electronic structure of EuN: Growth, spectroscopy, and theory

  • Svane, A.
  • Richter, J. H.
  • Smith, K. E.
  • Simpson, M.
  • Ruck, B. J.
  • Trodahl, H. J.
  • Azeem, M.
  • Chen, B.
  • Tadich, A.
  • Lambrecht, W. R. L.
  • Plank, N. O. V.
  • Mcnulty, J.
  • Natali, F.
  • Preston, A. R. H.
  • Cowie, B.
Abstract

<p>We present a detailed study of the electronic structure of europium nitride (EuN), comparing spectroscopic data to the results of advanced electronic structure calculations. We demonstrate the epitaxial growth of EuN films, and show that in contrast to other rare-earth nitrides successful growth of EuN requires an activated nitrogen source. Synchrotron-based x-ray spectroscopy shows that the samples contain predominantly Eu3+, but with a small and varying quantity of Eu2+ that we associate with defects, most likely nitrogen vacancies. X-ray absorption and x-ray emission spectroscopies (XAS and XES) at the nitrogen K edge are compared to several different theoretical models, namely, local spin density functional theory with Hubbard U corrections (LSDA + U), dynamic mean field theory (DMFT) in the Hubbard-I approximation, and quasiparticle self-consistent GW (QSGW) calculations. The DMFT and QSGW models capture the density of conduction band states better than does LSDA + U. Only the Hubbard-I model contains a correct description of the Eu 4f atomic multiplets and locates their energies relative to the band states, and we see some evidence in XAS for hybridization between the conduction band and the lowest-lying S-8 multiplet. The Hubbard-I model is also in good agreement with purely atomic multiplet calculations for the Eu M-edge XAS. LSDA + U and DMFT calculations find a metallic ground state, while QSGW results predict a direct band gap at X for EuN of about 0.9 eV that matches closely an absorption edge seen in optical transmittance at 0.9 eV, and a smaller indirect gap. Overall, the combination of theoretical methods and spectroscopies provides insights into the complex nature of the electronic structure of this material. The results imply that EuN is a narrow-band-gap semiconductor that lies close to the metal-insulator boundary, where the close proximity to the Fermi level of an empty Eu 4f multiplet raises the possibility of tuning both the magnetic and electronic states in this system.</p>

Topics
  • density
  • impedance spectroscopy
  • theory
  • semiconductor
  • Nitrogen
  • nitride
  • defect
  • density functional theory
  • x-ray absorption spectroscopy
  • Europium
  • X-ray emission spectroscopy