Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vries, M. A. De

  • Google
  • 2
  • 2
  • 151

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010Valence bond glass on an fcc lattice in the double perovskite Ba2YMoO6132citations
  • 2010Persistence of the valence bond glass state in the double perovskites Ba2-xSrxYMoO619citations

Places of action

Chart of shared publication
Bos, J.-W. G.
2 / 2 shared
Mclaughlin, Abbie
2 / 13 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Bos, J.-W. G.
  • Mclaughlin, Abbie
OrganizationsLocationPeople

article

Persistence of the valence bond glass state in the double perovskites Ba2-xSrxYMoO6

  • Vries, M. A. De
  • Bos, J.-W. G.
  • Mclaughlin, Abbie
Abstract

<p>The Ba2-xSrxYMoO6 double perovskites with a geometrically frustrated face centered Mo5+ (s=1/2) sublattice have been investigated using neutron powder-diffraction, magnetic-susceptibility, and heat-capacity measurements. Reduction in the average A-site radius results in the distortion of the crystal structure from cubic for x=0 to monoclinic for x=2 without affecting the Y/Mo inversion (&lt;1%). Magnetic-susceptibility measurements evidence two paramagnetic regimes for all samples. The high-temperature (HT) Curie constants are independent of composition x[0.26(1) emu mol(-1) K-1] while the low-temperature (LT) value gradually increases from 0.04(1) emu mol(-1) K-1 for x=0 to -0.10(1) emu mol(-1) K-1. The HT Weiss temperature (theta) increases from -159 K (x=0) to -50 K (x=2) while the LT values are -2.3(3) K for x&lt;2 and +10 K for x=2. Neutron powder diffraction does not evidence any Neel ordering. The x=2 sample is weakly ferromagnetic below 8 K (M-sat similar to 0.1 mu(B)/Mo in 1 T at 5 K) which is consistent with the small positive LT Weiss temperature. The magnetic data are consistent with a valence bond glass state where the bulk of the spins condense into spin singlets as previously observed for Ba2YMoO6, leaving a small fraction of the spins isolated or only weak ferromagnetically coupled to each other.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • glass
  • glass
  • susceptibility