People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Varpula, Aapo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2018Rapid Thermal Characterization of Materials with Ultra-High Resolution of Droplet Size Specimens using the Three-Omega Methodcitations
- 2018Silicon nano-thermoelectric detectors for for sensing and instrumentation applications
- 2018Microfabricated sensor platform with through-glass vias for bidirectional 3-omega thermal characterization of solid and liquid samplescitations
- 2018Thermal characterization of liquid and solid samples using a measurement platform for the bidirectional 3-omega method
- 2017Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranescitations
- 2015Nondestructive characterization of fusion and plasma activated wafer bonding using mesa and recess structurescitations
- 2011Electrical properties of granular semiconductors : modelling and experiments on metal-oxide gas sensorscitations
- 2011A compact quantum statistical model for the ballistic nanoscale MOSFETscitations
- 2010Magnetic polarons in ferromagnetic semiconductor single-electron transistorscitations
- 2010Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensorscitations
- 2010Modelling of dc characteristics for granular semiconductorscitations
- 2010Small-signal analysis of granular semiconductorscitations
- 2010Modeling of transient electrical characteristics for granular semiconductorscitations
Places of action
Organizations | Location | People |
---|
article
Magnetic polarons in ferromagnetic semiconductor single-electron transistors
Abstract
Magnetic polaron (MP) formation is studied theoretically in a single-electron transistor (SET) consisting of a ferromagnetic semiconductor quantum dot (FSQD) coupled to nonmagnetic source, drain, and gate electrodes. Especially, using Green's-function technique we calculate the effect of the gate-voltage-dependent spin polarization of the charge-carrier spins on the magnetization and conductance of the ferromagnetic semiconductor SET in the Coulomb blockade regime. We apply the Anderson impurity model to the FSQD and the ferromagnetic subsystem inside the FSQD is treated in the mean-field approximation. By minimizing the total free energy of the FSQD we calculate the MP binding energy and the dot magnetization as a function of temperature and the gate voltage. The results show that the ferromagnetic transition temperature of the FSQD increases strongly due to the MP formation, which may contribute to the experimentally observed increase in the Curie temperature in the FSQDs. The calculated results also indicate that due to the MP formation the average magnetization of the FSQD can be controlled by the gate voltage in a wide temperature range. Furthermore, our model predicts that the conductance vs gate-voltage curve, which in nonmagnetic SETs shows a symmetric double peak structure, becomes highly asymmetric due to the MP formation.