People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kirby, N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2018Structure, morphology and annealing behavior of ion tracks in polycarbonatecitations
- 2016Quantitative analysis of quench sensitivity of 7xxx alloys by using small angle X-ray scattering
- 2013Tracks and voids in amorphous Ge induced by swift heavy-ion irradiationcitations
- 2012Morphology of swift heavy ion tracks in metallic glassescitations
- 2012Morphology of swift heavy ion tracks in metallic glassescitations
- 2012Modification of Fe-B based metallic glasses using swift heavy ions
- 2010Ion-irradiation-induced amorphization of cobalt nanoparticlescitations
- 2009Dietary iron-loaded rat liver haemosiderin and ferritin : in situ measurement of iron core nanoparticle size and cluster structure using anomalous small-angle x-ray scatteringcitations
- 2007Iron K-edge anomalous small-angle X-ray scattering at 15-ID-D at the Advanced Photon Sourcecitations
Places of action
Organizations | Location | People |
---|
article
Ion-irradiation-induced amorphization of cobalt nanoparticles
Abstract
<p>The amorphization of Co nanoparticles embedded in SiO2 has been investigated by measuring their structure and size, before and after ion irradiation, by x-ray absorption spectroscopy and small-angle x-ray scattering, respectively. Compared to bulk material, unirradiated crystalline nanoparticles exhibited increased structural disorder and a decreased average coordination number as a result of finite-size effects. Upon irradiation, there was no variation in nanoparticle size yet significant structural change. The coordination number decreased further while the mean value (bondlength), variance (Debye-Waller factor), and asymmetry (third cumulant) of the interatomic distance distribution all increased, as consistent with theoretical predictions for an amorphous elemental metal. Furthermore, the interatomic distance distribution for irradiated Co nanoparticles was in excellent agreement with our molecular dynamics simulations for bulk amorphous Co, and we have thus attributed the observed structural changes to the formation of an amorphous phase. Though such a crystalline-to-amorphous phase transformation is not readily achievable in bulk material by ion irradiation, we suggest that the perturbed structural state prior to irradiation and the amorphous surrounding matrix both contribute to nucleating and stabilizing the amorphous phase in irradiated Co nanoparticles. In addition to the structural properties, the vibrational properties of the amorphous phase were also probed, using temperature-dependent x-ray absorption spectroscopy measurements. The Einstein temperature of the unirradiated crystalline nanoparticles was lower than that of bulk material due to loosely bonded surface/interfacial atoms. In contrast, that of the irradiated amorphous nanoparticles was substantially higher than the bulk value. We attribute this apparent bond stiffening to the influence of the rigid surrounding matrix.</p>