Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oxley, M.

  • Google
  • 5
  • 11
  • 166

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2009Theory of dynamical scattering in near-edge electron energy loss spectroscopy17citations
  • 2008Depth sectioning using electron energy loss spectroscopy1citations
  • 2008Volcano structure in atomic resolution core-loss images39citations
  • 2007Interpreting atomic-resolution spectroscopic images66citations
  • 2007Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy43citations

Places of action

Chart of shared publication
Allen, Leslie
5 / 9 shared
Rehr, J.
1 / 1 shared
Witte, Christopher
1 / 1 shared
Nellist, Peter
1 / 3 shared
Kirkland, A.
1 / 30 shared
Cosgriff, E.
1 / 3 shared
Dalfonso, Adrian
4 / 7 shared
Pennycook, Stephen
2 / 3 shared
Bentham, K. Van
2 / 2 shared
Pennycook, T.
1 / 2 shared
Varela, M.
1 / 10 shared
Chart of publication period
2009
2008
2007

Co-Authors (by relevance)

  • Allen, Leslie
  • Rehr, J.
  • Witte, Christopher
  • Nellist, Peter
  • Kirkland, A.
  • Cosgriff, E.
  • Dalfonso, Adrian
  • Pennycook, Stephen
  • Bentham, K. Van
  • Pennycook, T.
  • Varela, M.
OrganizationsLocationPeople

article

Theory of dynamical scattering in near-edge electron energy loss spectroscopy

  • Oxley, M.
  • Allen, Leslie
  • Rehr, J.
  • Witte, Christopher
Abstract

Beyond chemical information, the fine structure of an absorption edge gives bonding and electronic information. We provide a synthesis of fine structure and dynamical scattering theory, allowing the exploration of the effects of dynamical scattering on the measured fine structure. We discuss the effects of experimental geometry in the context of site-specific near-edge spectroscopy of NiAl2 O4 and find that large detectors serve to localize the inelastic signal and may be preferable to the small off-axis detectors currently used. We then explore the possibility of measuring changes in fine structure within a unit cell using scanning transmission electron microscopy.

Topics
  • theory
  • transmission electron microscopy
  • electron energy loss spectroscopy