Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Munroe, P.

  • Google
  • 11
  • 32
  • 736

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2016Chemical bonding states and solar selective characteristics of unbalanced magnetron sputtered TixM1−x−yNyfilms42citations
  • 2015Mapping strain modulated electronic structure perturbations in mixed phase bismuth ferrite thin films14citations
  • 2014Phase transformation pathways in amorphous germanium under indentation pressure13citations
  • 2011Chemistry of Ruddlesden-Popper planar faults at a ferroelectric-ferromagnet perovskite interface17citations
  • 2009Nanoindentation of ion-implanted crystalline germanium11citations
  • 2009Effect of microstructure upon elastic behaviour of human tooth enamel59citations
  • 2008Thickness-dependent phase transformation in nanoindented germanium thin films22citations
  • 2006Phase transformations induced by spherical indentation in ion-implanted amorphous silicon62citations
  • 2004Phase transformations induced in relaxed amorphous silicon by indentation at room temperature46citations
  • 2001Mechanical deformation in silicon by micro-indentation243citations
  • 2000Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon207citations

Places of action

Chart of shared publication
Amri, A.
1 / 16 shared
Dlugogorski, B. Z.
1 / 8 shared
Haque, M. M.
1 / 1 shared
Kabir, H.
1 / 12 shared
Ibrahim, K.
1 / 9 shared
Xie, Z.
1 / 7 shared
Chuah, L. S.
1 / 5 shared
Zhou, Z-F
1 / 4 shared
Jiang, Z-T
1 / 29 shared
Yin, C. Y.
1 / 1 shared
Mondinos, N.
1 / 12 shared
Kepaptsoglou, Dm
1 / 47 shared
Nagarajan, V.
2 / 9 shared
Liang, W. I.
1 / 1 shared
Chu, Y. H.
1 / 6 shared
Aguiar, Jeffery A.
1 / 2 shared
Browning, N. D.
1 / 4 shared
Ramasse, Q. M.
2 / 12 shared
Krishnan, P. S. Sankara Rama
1 / 4 shared
Haberl, B.
3 / 10 shared
Deshmukh, S.
1 / 2 shared
Ruffell, S.
3 / 7 shared
Williams, J. S.
7 / 39 shared
Arredondo-Arechavala, Miryam
1 / 19 shared
Weyland, M.
1 / 4 shared
Hambe, M.
1 / 1 shared
Oliver, D. J.
2 / 2 shared
Swain, M. V.
6 / 10 shared
Simpson, P. J.
1 / 1 shared
Hoffman, M.
1 / 9 shared
Xie, Z.-H.
1 / 1 shared
Swadener, John G.
1 / 20 shared
Chart of publication period
2016
2015
2014
2011
2009
2008
2006
2004
2001
2000

Co-Authors (by relevance)

  • Amri, A.
  • Dlugogorski, B. Z.
  • Haque, M. M.
  • Kabir, H.
  • Ibrahim, K.
  • Xie, Z.
  • Chuah, L. S.
  • Zhou, Z-F
  • Jiang, Z-T
  • Yin, C. Y.
  • Mondinos, N.
  • Kepaptsoglou, Dm
  • Nagarajan, V.
  • Liang, W. I.
  • Chu, Y. H.
  • Aguiar, Jeffery A.
  • Browning, N. D.
  • Ramasse, Q. M.
  • Krishnan, P. S. Sankara Rama
  • Haberl, B.
  • Deshmukh, S.
  • Ruffell, S.
  • Williams, J. S.
  • Arredondo-Arechavala, Miryam
  • Weyland, M.
  • Hambe, M.
  • Oliver, D. J.
  • Swain, M. V.
  • Simpson, P. J.
  • Hoffman, M.
  • Xie, Z.-H.
  • Swadener, John G.
OrganizationsLocationPeople

article

Nanoindentation of ion-implanted crystalline germanium

  • Oliver, D. J.
  • Swain, M. V.
  • Munroe, P.
  • Ruffell, S.
  • Williams, J. S.
  • Simpson, P. J.
Abstract

<p>Most indentation studies to date on crystalline germanium (c-Ge) and related covalent semiconductors have been carried out on pristine defect-free material. This paper addresses the paucity of studies on imperfect crystalline materials by exploring the impact of defects generated by ion implantation, prior to contact damage, upon the mechanical properties of c-Ge. Implantation with Ge ions is carried out to generate a layer of highly defective but still-crystalline Ge. Under nanoindentation with a sharp diamond tip, enhanced plasticity is observed relative to pristine material. Characterization by cross-sectional transmission electron microscopy, atomic force microscopy, and load curve analysis shows softening, quasiductile extrusion, and cracking suppression taking place. These changes can be explained by the high density of defects, and dangling bonds in particular, created by ion implantation and revealed by positron-annihilation spectroscopy, and are proportional to the fraction of "missing bonds" or vacancies in the material. A thermal annealing step at 200°C is sufficient to restore the mechanical response of pristine material, despite incomplete recovery of the original pristine crystal structure.</p>

Topics
  • density
  • impedance spectroscopy
  • atomic force microscopy
  • extrusion
  • semiconductor
  • nanoindentation
  • transmission electron microscopy
  • defect
  • annealing
  • plasticity
  • Germanium