Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Murphy, Catherine J.

  • Google
  • 1
  • 5
  • 63

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Plastic deformation of pentagonal silver nanowires63citations

Places of action

Chart of shared publication
Leach, Austin M.
1 / 1 shared
Mcdowell, Matthew T.
1 / 7 shared
Hunyadi, Simona E.
1 / 1 shared
Gall, Ken
1 / 2 shared
Lucas, Marcel
1 / 3 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Leach, Austin M.
  • Mcdowell, Matthew T.
  • Hunyadi, Simona E.
  • Gall, Ken
  • Lucas, Marcel
OrganizationsLocationPeople

article

Plastic deformation of pentagonal silver nanowires

  • Murphy, Catherine J.
  • Leach, Austin M.
  • Mcdowell, Matthew T.
  • Hunyadi, Simona E.
  • Gall, Ken
  • Lucas, Marcel
Abstract

<p>The plastic deformation of a pentagonal silver nanowire is studied by nanoindentation using an atomic force microscope (AFM). AFM images of the residual indent reveal the formation of a neck and surface atomic steps. To study the microscopic deformation mechanism, the indentation force-depth curve is converted to an indentation stress-strain curve and compared to the tensile stress-strain curves predicted by the atomistic simulations of pentagonal silver nanowires. The indentation stress-strain curve exhibits a series of yielding events, attributed to the nucleation and movement of dislocations. The maximum stress measured during nanoindentation (2 GPa) is comparable to the tensile yield strength predicted by atomistic simulations.</p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • silver
  • simulation
  • atomic force microscopy
  • strength
  • stress-strain curve
  • nanoindentation
  • dislocation
  • yield strength
  • deformation mechanism