Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gollisch, H.

  • Google
  • 1
  • 5
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Spin-dependent reflection of very-low-energy electrons from W(110)19citations

Places of action

Chart of shared publication
Feder, R.
1 / 1 shared
Artamonov, O. M.
1 / 2 shared
Sergeant, Anthony
1 / 2 shared
Samarin, Sergey
1 / 9 shared
Williams, Jim
1 / 12 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Feder, R.
  • Artamonov, O. M.
  • Sergeant, Anthony
  • Samarin, Sergey
  • Williams, Jim
OrganizationsLocationPeople

article

Spin-dependent reflection of very-low-energy electrons from W(110)

  • Feder, R.
  • Gollisch, H.
  • Artamonov, O. M.
  • Sergeant, Anthony
  • Samarin, Sergey
  • Williams, Jim
Abstract

For spin-polarized electrons in the energy range of 8-21 eV incident off-normally on a W(110) surface, we have measured the energy distribution of secondary electrons using a time-of-flight technique and a position-sensitive detector. Selecting the elastically scattered electrons in the specular direction, we obtained the spin asymmetry of the (00) low-energy electron diffraction beam as a function of the primary electron energy and incidence angle. Calculations on the basis of a relativistic multiple scattering formalism, with potential input derived from the self-consistently calculated ground state electronic structure, yielded (00) beam spectra in rather good agreement with their experimental counterparts. In particular, we found a prominent asymmetry feature of about 60% slightly below the emergence threshold energy for two nonspecular beams. Its physical origin is a region of strong spin-orbit coupling between even and odd bulk states, but its size, sign, and energy depend sensitively on the surface potential barrier, which identifies it as a surface resonance. Experimentally, the surface sensitivity of the large asymmetry is revealed by its sign reversal after oxygen exposure.

Topics
  • impedance spectroscopy
  • surface
  • Oxygen
  • electron diffraction