People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Krasheninnikov, Arkady
Helmholtz-Zentrum Dresden-Rossendorf
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Roadmap for focused ion beam technologiescitations
- 2023Phase transformations in single-layer MoTe<sub>2</sub> stimulated by electron irradiation and annealingcitations
- 2021Water dissociation and association on mirror twin boundaries in two-dimensional MoSe2: insights from density functional theory calculationscitations
- 2020Simulating Raman spectra by combining first-principles and empirical potential approaches with application to defective MoS2citations
- 2016Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons: a computational studycitations
- 2016Nanostructured BN-Mg composites: features of interface bonding and mechanical propertiescitations
- 2015Line and rotational defects in boron-nitrene: Structure, energetics, and dependence on mechanical strain from first-principles calculationscitations
- 2008Ion irradiation of carbon nanotubes encapsulating cobalt crystalscitations
- 2006Swift chemical sputtering of covalently bonded materialscitations
- 2006Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubescitations
Places of action
Organizations | Location | People |
---|
article
Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes
Abstract
"The presence of vacancy clusters in carbon nanotubes has been assumed to explain the formation of carbon peapods and the difference between the experimentally measured and theoretical fracture strength of nanotubes. We use atomistic simulations at various levels of theory to study the characteristics of large vacancies formed by up to six missing atoms. We show that the formation of big ""holes"" on nanotube walls is energetically unfavorable as the vacancies tend to split into smaller defects due to the reconstruction of the nanotube atomic network. We also demonstrate that there is a weak but long-ranged interaction between the vacancies not only through strain fields but, surprisingly, also due to electronic effects, similar to those of adatoms on metal surfaces."