People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gamaly, Eugene
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2018Ultrafast re-structuring of the electronic landscape of transparent dielectricscitations
- 2014Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulsecitations
- 2014Phase Transformation in Laser-Induced Micro-Explosion in Olivine (Fe,Mg)(2)SiO4citations
- 2006Origin of magnetic moments in carbon nanofoamcitations
- 2006Spin glass behaviour of magnetic carbon nanoclusters
- 2005Ablation of metals with picosecond laser pulsescitations
- 2002 Laser-deposited As 2 S 3 chalcogenide films for waveguide applications citations
- 2002Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablationcitations
- 2000Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablationcitations
Places of action
Organizations | Location | People |
---|
article
Origin of magnetic moments in carbon nanofoam
Abstract
<p>A range of carbon nanofoam samples was prepared by using a high-repetition-rate laser ablation technique under various Ar pressures. Their magnetic properties were systematically investigated by dc magnetization measurements and continuous wave (cw) as well as pulsed EPR techniques. In all samples we found very large zero-field cooled-field-cooled thermal hysteresis in the susceptibility measurements extending up to room temperature. Zero-field cooled (ZFC) susceptibility measurements also display very complex behavior with a susceptibility maximum that strongly varies in temperature from sample to sample. Low-temperature magnetization curves indicate a saturation magnetization MS ≈0.35 emu g at 2 K and can be well fitted with a classical Langevin function. MS is more than an order of magnitude larger than any possible iron impurity, proving that the observed magnetic phenomena are an intrinsic effect of the carbon nanofoam. Magnetization measurements are consistent with a spin-glass type ground state. The cusps in the ZFC susceptibility curves imply spin freezing temperatures that range from 50 K to the extremely high value of >300 K. Further EPR measurements revealed three different centers that coexist in all samples, distinguished on the basis of g -factor and relaxation time. Their possible origin and the role in the magnetic phenomena are discussed.</p>