Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sanvito, S.

  • Google
  • 9
  • 36
  • 774

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2020First-Principles Study of Electromigration in the Metallic Liquid State of GeTe and Sb2Te3 Phase-Change Compounds8citations
  • 2016Observation of van der Waals driven self-assembly of MoSI nanowires into a low-symmetry structure using aberration-corrected electron microscopy42citations
  • 2013Ground state of a spin-crossover molecule calculated by diffusion Monte Carlo17citations
  • 2013DFT structural investigation on Fe(1,10-phenanthroline)2(NCS)2 spin crossover moleculecitations
  • 2009MgN: A possible material for spintronic applications30citations
  • 2006Magnetomechanical interplay in spin-polarized point contacts2citations
  • 2006Spin and molecular electronics in atomically-generated orbital landscapes.629citations
  • 2005Current-driven magnetic rearrangements in spin-polarized point contacts23citations
  • 2005Point-contact Andreev reflection in ferromagnet/superconductor ballistic nanojunctions23citations

Places of action

Chart of shared publication
Gabardi, S.
1 / 1 shared
Galante, M.
1 / 2 shared
Cobelli, M.
1 / 2 shared
Bernasconi, M.
1 / 16 shared
Dvorsek, D.
1 / 1 shared
Nellist, P.
1 / 14 shared
Cosgriff, E.
1 / 3 shared
Compagnini, G.
1 / 5 shared
Stolojan, V.
1 / 17 shared
Vengust, D.
1 / 1 shared
Blau, W.
1 / 3 shared
Sloan, J.
1 / 13 shared
Pennycook, S.
1 / 3 shared
Carey, J.
1 / 2 shared
Mihailovic, D.
1 / 2 shared
Nicolosi, V.
1 / 2 shared
Coleman, J.
1 / 6 shared
Krishnamurthy, S.
1 / 9 shared
Green, M.
1 / 20 shared
Alfe, D.
1 / 11 shared
Droghetti, A.
3 / 6 shared
Chis, V.
1 / 3 shared
Rungger, I.
1 / 5 shared
Morari, C.
1 / 3 shared
Isai, R.
1 / 1 shared
Baadji, N.
1 / 1 shared
Sanchez, C. G.
1 / 1 shared
Stamenova, M.
2 / 2 shared
Todorov, Tchavdar
2 / 2 shared
Sahoo, Sudhakar
1 / 1 shared
Lambert, Colin John
2 / 31 shared
Suarez, V. Garcia
1 / 1 shared
Bailey, S.
1 / 1 shared
Rocha, A. R.
1 / 1 shared
Ferrer, J.
1 / 3 shared
Taddei, F.
1 / 1 shared
Chart of publication period
2020
2016
2013
2009
2006
2005

Co-Authors (by relevance)

  • Gabardi, S.
  • Galante, M.
  • Cobelli, M.
  • Bernasconi, M.
  • Dvorsek, D.
  • Nellist, P.
  • Cosgriff, E.
  • Compagnini, G.
  • Stolojan, V.
  • Vengust, D.
  • Blau, W.
  • Sloan, J.
  • Pennycook, S.
  • Carey, J.
  • Mihailovic, D.
  • Nicolosi, V.
  • Coleman, J.
  • Krishnamurthy, S.
  • Green, M.
  • Alfe, D.
  • Droghetti, A.
  • Chis, V.
  • Rungger, I.
  • Morari, C.
  • Isai, R.
  • Baadji, N.
  • Sanchez, C. G.
  • Stamenova, M.
  • Todorov, Tchavdar
  • Sahoo, Sudhakar
  • Lambert, Colin John
  • Suarez, V. Garcia
  • Bailey, S.
  • Rocha, A. R.
  • Ferrer, J.
  • Taddei, F.
OrganizationsLocationPeople

article

Spin and molecular electronics in atomically-generated orbital landscapes.

  • Lambert, Colin John
  • Suarez, V. Garcia
  • Bailey, S.
  • Rocha, A. R.
  • Ferrer, J.
  • Sanvito, S.
Abstract

Ab initio computational methods for electronic transport in nanoscaled systems are an invaluable tool for the design of quantum devices. We have developed a flexible and efficient algorithm for evaluating I-V characteristics of atomic junctions, which integrates the nonequilibrium Green's function method with density functional theory. This is currently implemented in the package SMEAGOL. The heart of SMEAGOL is our scheme for constructing the surface Green's functions describing the current-voltage probes. It consists of a direct summation of both open and closed scattering channels together with a regularization procedure of the Hamiltonian and provides great improvements over standard recursive methods. In particular it allows us to tackle material systems with complicated electronic structures, such as magnetic transition metals. Here we present a detailed description of SMEAGOL together with an extensive range of applications relevant for the two burgeoning fields of spin and molecular electronics.

Topics
  • density
  • impedance spectroscopy
  • surface
  • theory
  • density functional theory