People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Falko, Vladimir I.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Ultimate charge transport regimes in doping-controlled graphene laminates: phonon-assisted processes revealed by the linear magnetoresistancecitations
- 2024Ultimate Charge Transport Regimes in Doping-Controlled Graphene Laminates: Phonon-Assisted Processes Revealed by the Linear Magnetoresistance.
- 2024Two-dimensional electrons at mirror and twistronic twin boundaries in van der Waals ferroelectricscitations
- 2021Excited Rydberg States in MoSe2/WSe2 Heterostructurescitations
- 2019Data for Indirect to direct gap crossover in two-dimensional InSe revealed by angle resolved photoemission spectroscopy
- 2019Formation and healing of defects in atomically thin GaSe and InSecitations
- 2019Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopycitations
- 2018Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructurescitations
- 2018Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictionscitations
- 2017Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphenecitations
- 2016High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSecitations
- 2016High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSecitations
- 2016The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystalscitations
- 2016Auger recombination of dark excitons in WS2 and WSe2 monolayerscitations
- 2015k · p theory for two-dimensional transition metal dichalcogenide semiconductorscitations
- 2015Nanometre scale 3D nanomechanical imaging of semiconductor structures from few nm to sub-micrometre depthscitations
- 2014Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxycitations
- 2014Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculationscitations
- 2008Spin-orbit-assisted electron-phonon interaction and the magnetophonon resonance in semiconductor quantum wellscitations
- 2008Nuclear spin bi-stability in semiconductor quantum dots
- 2007Bistability of optically induced nuclear spin orientation in quantum dotscitations
- 2007The low energy electronic band structure of bilayer graphene.citations
- 2004A tunnel junction between a ferromagnet and a normal metal:Magnon-assisted contribution to thermopower and conductancecitations
- 2004A tunnel junction between a ferromagnet and a normal metal: magnon-assisted contribution to thermopower and conductancecitations
- 2003Magnon-assisted transport and thermopower in ferromagnet-normal-metal tunnel junctionscitations
- 2003Andreev reflection and subgap transport due to electron-magnon interactions in ferromagnet-superconductor junctions.citations
Places of action
Organizations | Location | People |
---|
article
Magnon-assisted transport and thermopower in ferromagnet-normal-metal tunnel junctions
Abstract
Magnon-assisted transport across a tunnel junction between a ferromagnet and a normal (nonmagnetic) metal is studied theoretically. A finite temperature difference across the junction produces a nonequilibrium magnetization that drives a charge current, mediated by electrons via electron-magnon interactions, from the ferromagnet into the normal metal. The corresponding thermopower coefficient is large, S∼ - (k B /e) ×(k B T/ω M ) 3/2 P(∏ + ,∏ - ,∏ N ) where P(∏ + ,∏ - ,∏ N ), 0≤P≤1, represents the degree of spin polarization of the current response to a bias voltage, and depends on the relative sizes of the majority ∏ + and the minority ∏ - band Fermi surface in the ferromagnet and in the normal metal, ∏ N .