Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baldo, M. A.

  • Google
  • 3
  • 16
  • 733

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2014A transferable model for singlet-fission kinetics422citations
  • 2014Erratum: A transferable model for singlet-fission kinetics[Nature Chemistry 6, 492-497 (2014), 10.1038/nchem.1974]citations
  • 2002Prospects for electrically pumped organic lasers311citations

Places of action

Chart of shared publication
Sfeir, M. Y.
2 / 3 shared
Swager, T. M.
2 / 4 shared
Wu, T.
2 / 14 shared
Bawendi, M. G.
2 / 2 shared
Van Voorhis, T.
2 / 2 shared
Wilson, M. W. B.
2 / 13 shared
Johnson, K.
2 / 12 shared
Friend, Richard, H.
2 / 549 shared
Yost, S. R.
2 / 3 shared
Lee, J.
2 / 41 shared
Mcmahon, D. P.
2 / 2 shared
Parkhurst, R. R.
2 / 2 shared
Rao, A.
2 / 53 shared
Thompson, N. J.
2 / 2 shared
Congreve, D. N.
2 / 2 shared
Forrest, S. R.
1 / 1 shared
Chart of publication period
2014
2002

Co-Authors (by relevance)

  • Sfeir, M. Y.
  • Swager, T. M.
  • Wu, T.
  • Bawendi, M. G.
  • Van Voorhis, T.
  • Wilson, M. W. B.
  • Johnson, K.
  • Friend, Richard, H.
  • Yost, S. R.
  • Lee, J.
  • Mcmahon, D. P.
  • Parkhurst, R. R.
  • Rao, A.
  • Thompson, N. J.
  • Congreve, D. N.
  • Forrest, S. R.
OrganizationsLocationPeople

article

Prospects for electrically pumped organic lasers

  • Forrest, S. R.
  • Baldo, M. A.
Abstract

<p>We examine the effects of nonradiative losses on lasing in crystalline and amorphous organic thin films. In crystalline films, the dominant loss mechanism is singlet-singlet annihilation, and this must be avoided if lasing is to be achieved at practical current densities. The electrically pumped crystalline-tetracene laser structure of Schön et al. [Science 289, 599 (2000)] is studied in detail. Optical and electrical confinement in the bulk structure appears unable to explain the spectral narrowing reported; consequently, we consider electron-hole plasmas, self-focusing at interfaces, and crystal defects as possible sources of the reported phenomena. In amorphous films, lasers are likely to have to operate at current densities J &lt; 1000 A/cm<sup>2</sup> due to a combination of nonradiative losses. The performance of potential lasing materials is quantified by the external quantum efficiency-current-density product, η<sub>EXT</sub>J. Electrically pumped lasers require η<sub>EXT</sub>J∼5 A/cm<sup>2</sup>; the best amorphous devices currently posses η<sub>EXT</sub>J∼0.3 A/cm<sup>2</sup>. However, we demonstrate that electrically pumped lasing in amorphous materials should be possible using indirect pumping techniques.</p>

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • thin film
  • defect