Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Remhof, A.

  • Google
  • 7
  • 32
  • 209

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2016Reaction of aerogel containing ceramic fibre insulation to fire exposure26citations
  • 2012Reversible hydrogen absorption in sodium intercalated fullerenes51citations
  • 2011Experimental charge density of LiBD4 from maximum entropy method14citations
  • 2011Experimental charge density of LiBD 4 from maximum entropy method14citations
  • 2008Direct synthesis of Li[BH 4 ] and Li[BD 4 ] from the elements66citations
  • 2003In situ preparation of YH2 thin films by PLD for switchable devices12citations
  • 2002Hysteresis in YHx films observed with in situ measurements26citations

Places of action

Chart of shared publication
Ghazi Wakili, K.
1 / 4 shared
Gorreri, Alessandra
1 / 3 shared
Choucair, M.
1 / 1 shared
Pontiroli, Daniele
1 / 6 shared
Zuttel, A.
1 / 4 shared
Sheptyakov, D.
1 / 8 shared
Ricco, Mauro
1 / 3 shared
Mauron, P.
1 / 1 shared
Bliersbach, A.
1 / 1 shared
Gaboardi, Mattia Gianandrea
1 / 3 shared
Borgschulte, A.
4 / 14 shared
Aramini, Matteo
1 / 5 shared
Filinchuk, Yaroslav
1 / 41 shared
Palatinus, L.
2 / 14 shared
Zuettel, A.
1 / 1 shared
Buchter, F.
3 / 3 shared
Mauron, Ph.
3 / 3 shared
Friedrichs, O.
3 / 6 shared
Lodziana, Z.
2 / 2 shared
Züttel, A.
2 / 6 shared
Filinchuk, Y.
1 / 3 shared
Zwicky, C. N.
1 / 1 shared
Bielmann, M.
1 / 2 shared
Lokhorst, Ac
1 / 1 shared
Dam, B.
1 / 29 shared
Rector, Jh
1 / 1 shared
Heijna, Mcr
1 / 1 shared
Borsa, D.
1 / 1 shared
Griessen, R.
1 / 16 shared
Molen, S. J. Van Der
1 / 5 shared
Kerssemakers, J. W. J.
1 / 1 shared
Kooij, Ernst Stefan
1 / 17 shared
Chart of publication period
2016
2012
2011
2008
2003
2002

Co-Authors (by relevance)

  • Ghazi Wakili, K.
  • Gorreri, Alessandra
  • Choucair, M.
  • Pontiroli, Daniele
  • Zuttel, A.
  • Sheptyakov, D.
  • Ricco, Mauro
  • Mauron, P.
  • Bliersbach, A.
  • Gaboardi, Mattia Gianandrea
  • Borgschulte, A.
  • Aramini, Matteo
  • Filinchuk, Yaroslav
  • Palatinus, L.
  • Zuettel, A.
  • Buchter, F.
  • Mauron, Ph.
  • Friedrichs, O.
  • Lodziana, Z.
  • Züttel, A.
  • Filinchuk, Y.
  • Zwicky, C. N.
  • Bielmann, M.
  • Lokhorst, Ac
  • Dam, B.
  • Rector, Jh
  • Heijna, Mcr
  • Borsa, D.
  • Griessen, R.
  • Molen, S. J. Van Der
  • Kerssemakers, J. W. J.
  • Kooij, Ernst Stefan
OrganizationsLocationPeople

article

Hysteresis in YHx films observed with in situ measurements

  • Griessen, R.
  • Molen, S. J. Van Der
  • Kerssemakers, J. W. J.
  • Kooij, Ernst Stefan
  • Remhof, A.
Abstract

Giant hysteretic effects in the YHx hydrogen switchable mirror system are observed between x=1.9 and x=3 in pressure composition isotherms, optical and electrical properties, and mechanical stress. Polycrystalline Y films are studied by simultaneous in situ measurements of electrical resistivity, optical transmittance and x-ray diffractometry. These experiments are linked to optical microscopy of the samples. During hydrogen loading above x=1.9 the films stay in the metallic fcc phase until the optical transmittance reaches its minimum and the electrical resistance curve exhibits a characteristic feature at x=2.1. Upon further loading the system crosses the miscibility gap in which the fcc phase coexists with the hcp phase before hydrogen saturation is reached in the pure hcp phase. While the fcc phase stays at a concentration of x=2.1 in the coexistence region during loading, it remains at a concentration of x=1.9 during unloading. The hysteretic effects observed in optical transmission and electrical resistivity result from the different properties of the low concentration fcc phase YH1.9 and the high concentration fcc phase YH2.1. They can be explained on the basis of the bulk phase diagram if the different stress states during loading and unloading are taken into account. These results contradict earlier interpretations of the hysteresis in thin film YHx, based on nonsimultaneous measurements of the optical and structural properties on different films.

Topics
  • impedance spectroscopy
  • resistivity
  • phase
  • experiment
  • thin film
  • Hydrogen
  • optical microscopy
  • phase diagram