Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chelikowsky, James R.

  • Google
  • 3
  • 5
  • 308

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2002Electronic structure and spin polarization of MnxGa1-xN220citations
  • 2002First-principles simulations of liquid ZnTecitations
  • 2001Electronic structure and spin polarization of Mn-containing dilute magnetic III-V semiconductors88citations

Places of action

Chart of shared publication
Jain, M.
2 / 7 shared
Kronik, Leeor
2 / 20 shared
Jain, Manish
1 / 14 shared
Godlevsky, Vitaliy V.
1 / 1 shared
Godlevsky, Vv
1 / 1 shared
Chart of publication period
2002
2001

Co-Authors (by relevance)

  • Jain, M.
  • Kronik, Leeor
  • Jain, Manish
  • Godlevsky, Vitaliy V.
  • Godlevsky, Vv
OrganizationsLocationPeople

article

Electronic structure and spin polarization of Mn-containing dilute magnetic III-V semiconductors

  • Chelikowsky, James R.
  • Godlevsky, Vv
  • Jain, M.
  • Kronik, Leeor
Abstract

<p>We present ab initio density-functional calculations for the electronic structure of the dilute magnetic semiconductors MnxGa1-xAs and MnxIn1-xAs with a realistic x = 0.063. We find that the introduction of Mn perturbs the position of the nearest As atoms, but does not break the tetrahedral symmetry. Neither material is found to be strictly half metallic. However, in both materials the Mn content results in a majority-spin valence-band maximum that is similar to0.5 eV above the minority-spin valence-band maximum. This large valence-band split is primarily due to the hybridization of As 4p and Mn 3d orbitals. It results in a significant energy range where holes have a well-defined spin. The effective masses of holes in this range are found to be comparable to those of GaAs and InAs. Hence, in an ideal, disorder-free situation, spin-polarized transport may be explained by conventional transport in the context of a simple band picture. This leads to a theoretical limit of 100% spin injection from these materials. Attaining this limit in a sufficiently ordered material also requires a careful "engineering" of the Fermi-level position and a sufficiently low temperature.</p>

Topics
  • density
  • impedance spectroscopy
  • x-ray absorption spectroscopy
  • III-V semiconductor
  • spin polarization