People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nagengast, D. G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Structural, electrical, and optical properties of La1-z YzHx switchable mirrors
Abstract
Thin La1-zYzHx films, in the composition range 0<z<1 and 0<x<3, are studied using x-ray diffraction, dc resistivity measurements, reflectance-transmittance measurements, and ellipsometry in the visible and near-infrared spectral range. For x=0 the structural phase diagram is similar to that of the bulk system. Upon hydrogen absorption and desorption, the La1-zYzHx films do not disproportionate. All dihydrides have a fcc structure with a continuous shift of the lattice parameter, whereas the trihydrides undergo a transition from a fcc lattice structure for 0<z<0.67 to a hexagonal lattice structure for 0.81<z<1. No significant thin-film effects occur in the structural, electrical, and optical properties, whereas disorder effects are observed in the x-ray coherence length, the electron relaxation time at both zero and optical frequencies, and in the optical properties of the trihydrides. In LaH2 a similar dihydride transmission window is observed as in YH2. The suppression of this window upon alloying is a disorder effect. As in the case of their parent materials, all La1-zYzHx alloys (both cubic and hexagonal) exhibit a metal-insulator transition for 2<x<3, which is a clear demonstration of the robustness of the metal-insulator transition in switchable mirrors. The optical band-gap shifts from 1.87±0.03 eV for LaH3 to 2.63±0.03 eV for YH3. The optical properties suggest that the fundamental band gap is 1–1.8 eV lower.