People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pelouard, Jean-Luc
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2013Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowirescitations
- 2013Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowirescitations
- 2013Metal–dielectric bi-atomic structure for angular-tolerant spectral filteringcitations
- 2012Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cellscitations
- 2012Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cellscitations
- 2012Toward high efficiency ultra-thin CIGSe based solar cells using light management techniquescitations
- 2012Towards ultrathin copper indium gallium diselenide solar cells: proof of concept study by chemical etching and gold back contact engineeringcitations
- 2001Strong discontinuities in the complex photonic band structure of transmission metallic gratingscitations
Places of action
Organizations | Location | People |
---|
article
Strong discontinuities in the complex photonic band structure of transmission metallic gratings
Abstract
Complex photonic band structures (CPBS) of transmission metallic gratings with rectangular slits are shown to exhibit strong discontinuities that are not evidenced in the usual energetic band structures. These discontinuities are located on Wood-Rayleigh's anomalies and reveal unambiguously two different types of resonances, which are identified as horizontal and vertical surface-plasmon resonances. Spectral position and width of peaks in the transmission spectrum can be directly extracted from CPBS for both kinds of resonances.