Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hampel, S.

  • Google
  • 11
  • 61
  • 240

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024Comparison of local structure of CrCl3 bulk and nanocrystals above and below the structural phase transitioncitations
  • 2021Multi-walled carbon nanotube dispersion methodologies in alkaline media and their influence on mechanical reinforcement of alkali-activated nanocomposites31citations
  • 2020Production of multimaterial components by material extrusion - Fused filament fabrication (ME-FFF)citations
  • 2020Systematic investigations of annealing and functionalization of carbon nanotube yarnscitations
  • 2019Heat Exchange Structures Based on Copper/CNT Composite2citations
  • 2018Fe1-xNix alloy nanoparticles encapsulated inside carbon nanotubes: Controlled synthesis, structure and magnetic propertiescitations
  • 2016Carbon nanohybrids as electro-responsive drug delivery systems15citations
  • 2015Recent advances in the synthesis and biomedical applications of nanocomposite hydrogels26citations
  • 2013Quercetin nanocomposite as novel anticancer therapeutic: Improved efficiency and reduced toxicity40citations
  • 2011Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications69citations
  • 2006Growth studies, TEM and XRD investigations of iron-filled carbon nanotubes57citations

Places of action

Chart of shared publication
Fritsch, P.
1 / 1 shared
Dioguardi, A. P.
1 / 1 shared
Hammerath, F.
1 / 2 shared
Büchner, Bernd
1 / 35 shared
Lepucki, P.
1 / 1 shared
Grafe, H. J.
1 / 1 shared
Wurmehl, S.
1 / 9 shared
Grönke, M.
1 / 1 shared
Roslova, M.
1 / 2 shared
Valldor, M.
1 / 3 shared
Havemann, R.
1 / 1 shared
Wolter, A. U. B.
1 / 5 shared
Doert, Thomas
1 / 41 shared
Yang, J.
1 / 37 shared
Davoodabadi, M.
1 / 2 shared
Cuniberti, G.
1 / 15 shared
Sgarzi, M.
1 / 4 shared
Mechtcherine, V.
1 / 11 shared
Liebscher, M.
1 / 10 shared
B., Rezaie A.
1 / 1 shared
Wolf, D.
2 / 4 shared
Holzer, Clemens
1 / 65 shared
Cano, S.
1 / 4 shared
Müller-Köhn, A.
1 / 1 shared
Kukla, Christian
1 / 52 shared
Günther, A.
1 / 5 shared
Moritz, T.
1 / 13 shared
Büchner, B.
3 / 41 shared
Hayashi, Y.
1 / 2 shared
Mertig, M.
2 / 4 shared
Leonhardt, A.
3 / 17 shared
Khavrus, V.
1 / 1 shared
Eckert, V.
1 / 1 shared
Scholz, M.
1 / 5 shared
Kieback, B.
1 / 76 shared
Hutsch, T.
1 / 12 shared
Lohse, J.
1 / 1 shared
Weißgärber, T.
1 / 42 shared
Schlott, A.
1 / 2 shared
Lubk, A.
1 / 3 shared
Damm, C.
1 / 10 shared
Ghunaim, R.
1 / 1 shared
Iemma, Francesca
1 / 4 shared
Cirillo, G.
4 / 6 shared
Ug, Spizzirri
3 / 4 shared
Picci, Nevio
1 / 2 shared
Vittorio, O.
3 / 3 shared
Restuccia, Donatella
1 / 1 shared
Curcio, M.
3 / 3 shared
Spataro, T.
1 / 1 shared
Picci, N.
3 / 5 shared
Fp, Nicoletta
1 / 1 shared
Iemma, F.
3 / 6 shared
Puoci, F.
2 / 3 shared
Parchi, Paolo Domenico
1 / 1 shared
Cecchini, M.
1 / 3 shared
Oi, Parisi
1 / 1 shared
Ritschel, M.
1 / 6 shared
Klingeler, R.
1 / 8 shared
Buchner, B.
1 / 6 shared
Müller, C.
1 / 25 shared
Chart of publication period
2024
2021
2020
2019
2018
2016
2015
2013
2011
2006

Co-Authors (by relevance)

  • Fritsch, P.
  • Dioguardi, A. P.
  • Hammerath, F.
  • Büchner, Bernd
  • Lepucki, P.
  • Grafe, H. J.
  • Wurmehl, S.
  • Grönke, M.
  • Roslova, M.
  • Valldor, M.
  • Havemann, R.
  • Wolter, A. U. B.
  • Doert, Thomas
  • Yang, J.
  • Davoodabadi, M.
  • Cuniberti, G.
  • Sgarzi, M.
  • Mechtcherine, V.
  • Liebscher, M.
  • B., Rezaie A.
  • Wolf, D.
  • Holzer, Clemens
  • Cano, S.
  • Müller-Köhn, A.
  • Kukla, Christian
  • Günther, A.
  • Moritz, T.
  • Büchner, B.
  • Hayashi, Y.
  • Mertig, M.
  • Leonhardt, A.
  • Khavrus, V.
  • Eckert, V.
  • Scholz, M.
  • Kieback, B.
  • Hutsch, T.
  • Lohse, J.
  • Weißgärber, T.
  • Schlott, A.
  • Lubk, A.
  • Damm, C.
  • Ghunaim, R.
  • Iemma, Francesca
  • Cirillo, G.
  • Ug, Spizzirri
  • Picci, Nevio
  • Vittorio, O.
  • Restuccia, Donatella
  • Curcio, M.
  • Spataro, T.
  • Picci, N.
  • Fp, Nicoletta
  • Iemma, F.
  • Puoci, F.
  • Parchi, Paolo Domenico
  • Cecchini, M.
  • Oi, Parisi
  • Ritschel, M.
  • Klingeler, R.
  • Buchner, B.
  • Müller, C.
OrganizationsLocationPeople

article

Comparison of local structure of CrCl3 bulk and nanocrystals above and below the structural phase transition

  • Fritsch, P.
  • Dioguardi, A. P.
  • Hammerath, F.
  • Büchner, Bernd
  • Lepucki, P.
  • Grafe, H. J.
  • Wurmehl, S.
  • Grönke, M.
  • Roslova, M.
  • Valldor, M.
  • Hampel, S.
  • Havemann, R.
  • Wolter, A. U. B.
  • Doert, Thomas
Abstract

<p>At least since the discovery of graphene and the subsequent finding of a plethora of other 2D materials, it is well anticipated that the dimensionality of a material may constitute a functional parameter. In this paper, we discuss zero-field Cr53 nuclear magnetic resonance (NMR) measured in the magnetically ordered state and Cl35 nuclear quadruple resonance (NQR) data derived in the paramagnetic state of the two-dimensional van der Waals material CrCl3, comparing the results for a bulk single crystal and a nanocrystal. In particular, we apply these spectroscopic methods to monitor the evolution of local environments in the single crystal across the structural phase transition and compare the structural and magnetic properties of a bulk single crystal and nanocrystal sample at low temperatures. The actual structural transition is reported to be of first order, where a certain hysteresis is to be expected. However, we see that both the high- and low-temperature phases coexist in both sample types across the full temperature range (300 K-1.5 K) albeit with different phase fractions. This coexistence of phases in different sample types originates in a kinetic arrest where the arrested structural domains are related to defects and stacking faults. Such defects are to a large part found in the nanocrystal but to a smaller extent in the bulk single crystal. These frozen-in phases have further consequences: The critical exponent β, derived by fitting the Cr53 NMR data, is considered to denote the dimensionality of magnetic interactions. Here, the values differ considerably for both sample types. Probably, the difference in β arises from the specific domain structure of kinetically arrested phases and, in turn, from an altered interlayer magnetic exchange mediated by magnetic moments related to frozen-in domains that are related to defects and stacking faults,with their number being much higher in the nanocrystal. These findings may, in part, explain the different magnetic properties reported for different samples as their individual defect landscape determines the kinetically arrested phase fraction in CrCl3. Hence, the structure-property relation in CrCl3 is even more complex than anticipated.</p>

Topics
  • impedance spectroscopy
  • single crystal
  • phase
  • phase transition
  • defect
  • two-dimensional
  • Nuclear Magnetic Resonance spectroscopy
  • stacking fault