People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Büchner, Bernd
TU Dresden
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Influence of magnetic field on electron beam-induced Coulomb explosion of gold microparticles in transmission electron microscopycitations
- 2024Evidence of superconducting Fermi arcs
- 2024ZnO–Graphene Oxide Nanocomposite for Paclitaxel Delivery and Enhanced Toxicity in Breast Cancer Cells
- 2024Structure, mechanical characteristics and high-temperature stability of sintered under high and by hot pressing ZrB2- and HfB2–based composites
- 2024Comparison of local structure of CrCl3 bulk and nanocrystals above and below the structural phase transition
- 2023Facile one-pot hydrothermal synthesis of a zinc oxide/curcumin nanocomposite with enhanced toxic activity against breast cancer cells
- 2023Metamagnetic transition and a loss of magnetic hysteresis caused by electron trapping in monolayers of single-molecule magnet Tb$_{2}$@C$_{79}$Ncitations
- 2023Flux Growth and Characterization of Bulk InVO4 Crystalscitations
- 2022Synthesis and Physical Properties of Iridium-Based Sulfide Ca1−xIr4S6(S2) [x = 0.23–0.33]
- 2022Synthesis and Physical Properties of Iridium-Based Sulfide Ca$_{1−x}$Ir$_4$S$_6$(S$_2$) [x = 0.23–0.33]
- 2022Metamagnetic transition and a loss of magnetic hysteresis caused by electron trapping in monolayers of single-molecule magnet Tb2@C79Ncitations
- 2022Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b] thiophene thin filmscitations
- 2022Metamagnetic transition and a loss of magnetic hysteresis caused by electron trapping in monolayers of single-molecule magnet Tb$_{2}$@C$_{79}$Ncitations
- 2022Combined experimental and theoretical study of hydrostatic (He-gas) pressure effects in α-RuCl3citations
- 2021Vacuum processed large area doped thin-film crystalscitations
- 2021Axion Mie theory of electron energy loss spectroscopy in topological insulators
- 2020Pulsed laser deposition of Fe-oxypnictides : Co- and F-substitutioncitations
- 2019Chromium Trihalides CrX3 (X = Cl, Br, I): Direct Deposition of Micro- and Nanosheets on Substrates by Chemical Vapor Transport
- 2017Doping dependent plasmon dispersion in 2H-transition metal dichalcogenidescitations
- 2016Jeff Description of the Honeycomb Mott Insulator α-RuCl3citations
- 2016Doping dependent plasmon dispersion in 2H-transition metal dichalcogenidescitations
- 2014Observation of strontium segregation in LaAlO3/SrTiO3 and NdGaO3/SrTiO3 oxide heterostructures by X-ray photoemission spectroscopy
- 2013A Systematic and Comparative Study of Binary Metal Catalysts for Carbon Nanotube Fabrication Using CVD and Laser Evaporationcitations
- 2013Carbon nanostructures as multi-functional drug delivery platformscitations
- 2012Amorphous Carbon under 80 kV Electron Irradiation: A Means to Make or Break Graphenecitations
- 2012CVD-Grown Horizontally Aligned Single-Walled Carbon Nanotubes: Synthesis Routes and Growth Mechanismscitations
- 2012Understanding High-Yield Catalyst-Free Growth of Horizontally Aligned Single-Walled Carbon Nanotubes Nucleated by Activated C <sub>60</sub> Speciescitations
- 2011Optimizing substrate surface and catalyst conditions for high yield chemical vapor deposition grown epitaxially aligned single-walled carbon nanotubescitations
- 2011Growth of catalyst-assisted and catalyst-free horizontally aligned single wall carbon nanotubescitations
- 2010Nonresonant x-ray magnetic scattering on rare-earth iron borates R Fe 3(BO3)4citations
- 2010Investigating the Outskirts of Fe and Co Catalyst Particles in Alumina-Supported Catalytic CVD Carbon Nanotube Growthcitations
- 2010Carbon nanotubes filled with ferromagnetic materials
- 2009Carbon nanotube synthesis via ceramic catalystscitations
- 2008Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growthcitations
- 2006High quality double wall carbon nanotubes with a defined diameter distribution by chemical vapor deposition from alcoholcitations
Places of action
Organizations | Location | People |
---|
article
Comparison of local structure of CrCl3 bulk and nanocrystals above and below the structural phase transition
Abstract
<p>At least since the discovery of graphene and the subsequent finding of a plethora of other 2D materials, it is well anticipated that the dimensionality of a material may constitute a functional parameter. In this paper, we discuss zero-field Cr53 nuclear magnetic resonance (NMR) measured in the magnetically ordered state and Cl35 nuclear quadruple resonance (NQR) data derived in the paramagnetic state of the two-dimensional van der Waals material CrCl3, comparing the results for a bulk single crystal and a nanocrystal. In particular, we apply these spectroscopic methods to monitor the evolution of local environments in the single crystal across the structural phase transition and compare the structural and magnetic properties of a bulk single crystal and nanocrystal sample at low temperatures. The actual structural transition is reported to be of first order, where a certain hysteresis is to be expected. However, we see that both the high- and low-temperature phases coexist in both sample types across the full temperature range (300 K-1.5 K) albeit with different phase fractions. This coexistence of phases in different sample types originates in a kinetic arrest where the arrested structural domains are related to defects and stacking faults. Such defects are to a large part found in the nanocrystal but to a smaller extent in the bulk single crystal. These frozen-in phases have further consequences: The critical exponent β, derived by fitting the Cr53 NMR data, is considered to denote the dimensionality of magnetic interactions. Here, the values differ considerably for both sample types. Probably, the difference in β arises from the specific domain structure of kinetically arrested phases and, in turn, from an altered interlayer magnetic exchange mediated by magnetic moments related to frozen-in domains that are related to defects and stacking faults,with their number being much higher in the nanocrystal. These findings may, in part, explain the different magnetic properties reported for different samples as their individual defect landscape determines the kinetically arrested phase fraction in CrCl3. Hence, the structure-property relation in CrCl3 is even more complex than anticipated.</p>