People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pakdel, Sahar
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo$_2$Al$_9$
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo 2 Al 9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics M Co 2 Al 9 ( M = Sr, Ba)citations
- 2023Exciton superfluidity in two-dimensional heterostructures from first principlescitations
- 2023Exciton superfluidity in two-dimensional heterostructures from first principles:Importance of material-specific screeningcitations
- 2022Visualizing band structure hybridization and superlattice effects in twisted MoS 2 /WS 2 heterobilayerscitations
- 2022Visualizing band structure hybridization and superlattice effects in twisted MoS<sub>2</sub>/WS<sub>2</sub> heterobilayerscitations
- 2020Exciton diffusion in two-dimensional metal-halide perovskitescitations
- 2019Laser-Beam-Patterned Topological Insulating States on Thin Semiconducting MoS2citations
- 2018An implementation of spin–orbit coupling for band structure calculations with Gaussian basis sets: Two-dimensional topological crystals of Sb and Bicitations
Places of action
Organizations | Location | People |
---|
article
Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)
Abstract
<p>Intermetallics are an important playground to stabilize a large variety of physical phenomena, arising from their complex crystal structure. The ease of their chemical tunabilty makes them suitable platforms to realize targeted electronic properties starting from the symmetries hidden in their unit cell. Here, we investigate the family of the recently discovered intermetallics <b><i>M</i>Co<sub>2</sub>Al<sub>9</sub> (<i>M</i> = </b>Sr, Ba) and we unveil their electronic structure. By using angle-resolved photoelectron spectroscopy and density functional theory calculations, we discover the existence of Dirac-like dispersions as ubiquitous features in this family, coming from the hidden kagome and honeycomb symmetries embedded in the unit cell. Finally, from calculations, we expect that the spin-orbit coupling is responsible for opening energy gaps in the electronic structure spectrum, which also affects the majority of the observed Dirac-like states. Our study constitutes an experimental observation of the electronic structure of <b><i>M</i>Co<sub>2</sub>Al<sub>9</sub></b> and proposes these systems as hosts of Dirac-like physics with intrinsic spin-orbit coupling. The latter effect suggests <b><i>M</i>Co<sub>2</sub>Al<sub>9</sub></b> as a future platform for investigating the emergence of nontrivial topology.</p>