Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marholt, Rune Højlund

  • Google
  • 1
  • 4
  • 1

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Exciton superfluidity in two-dimensional heterostructures from first principles1citations

Places of action

Chart of shared publication
Pakdel, Sahar
1 / 13 shared
Nilsson, Fredrik
1 / 4 shared
Thygesen, Ks
1 / 36 shared
Grovn, Emil
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Pakdel, Sahar
  • Nilsson, Fredrik
  • Thygesen, Ks
  • Grovn, Emil
OrganizationsLocationPeople

article

Exciton superfluidity in two-dimensional heterostructures from first principles

  • Pakdel, Sahar
  • Marholt, Rune Højlund
  • Nilsson, Fredrik
  • Thygesen, Ks
  • Grovn, Emil
Abstract

<p>Recent theoretical and experimental studies suggest that van der Waals heterostructures with Formula Presented- and Formula Presented-doped bilayers of transition metal dichalcogenides are promising facilitators of exciton superfluidity. Exciton superfluidity in these bilayer systems is often modelled by solving a mean-field gap equation defined for only the conduction and valence band of the electron and hole material, respectively. A key quantity entering the gap equation is the effective Coulomb potential acting as the bare interaction in the subspace of the model. Since the model only includes a few bands around the Fermi energy, the effective model interaction is partially screened. Although the screening is a material-dependent quantity it has, in previous studies, been accounted for in an ad hoc manner, by assuming a static dielectric constant of 2 for a wide range of different materials. In this paper we show that the effective model interaction can be derived from first principles using open source code frameworks. We show that the material dependent screening, accounted for by this ab initio downfolding procedure, has a large influence on the exciton binding energies and superfluid properties. By applying the method to 336 different heterostructures comprised of transition metal dichalcogenides and transition metal oxides we show that the proposed downfolding method yields qualitatively different trends of the exciton binding energies and superfluid properties compared to the standard assumptions with a single dielectric constant. Additionally, we propose material platforms of both transition metal oxides and dichalcogenides with superior properties compared to conventional devices with two transition metal dichalcogenide layers.</p>

Topics
  • impedance spectroscopy
  • dielectric constant
  • two-dimensional