Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Staniforth, Michael

  • Google
  • 1
  • 6
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Hot carriers in mixed Pb-Sn halide perovskite semiconductors cool slowly while retaining their electrical mobility22citations

Places of action

Chart of shared publication
Jayawardena, K. D. G. Imalka
1 / 6 shared
Butler-Caddle, Edward
1 / 4 shared
Lloyd-Hughes, James
1 / 11 shared
Woolley, Jack M.
1 / 3 shared
Silva, S. Ravi P.
1 / 17 shared
Bandara, Rajapakshe M. I.
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Jayawardena, K. D. G. Imalka
  • Butler-Caddle, Edward
  • Lloyd-Hughes, James
  • Woolley, Jack M.
  • Silva, S. Ravi P.
  • Bandara, Rajapakshe M. I.
OrganizationsLocationPeople

article

Hot carriers in mixed Pb-Sn halide perovskite semiconductors cool slowly while retaining their electrical mobility

  • Jayawardena, K. D. G. Imalka
  • Butler-Caddle, Edward
  • Lloyd-Hughes, James
  • Woolley, Jack M.
  • Silva, S. Ravi P.
  • Bandara, Rajapakshe M. I.
  • Staniforth, Michael
Abstract

<p>The electron-phonon interaction controls the intrinsic mobility of charges in metal halide perovskites, and determines the rate at which carriers lose energy. Here, the carrier mobility and cooling dynamics were directly examined using a combination of ultrafast transient absorption spectroscopy and optical pump, THz probe spectroscopy, in perovskites with different lead and tin content, and for a range of carrier densities. Significantly, the carrier mobility in the "hot phonon bottleneck"regime, where the LO phonon bath keeps carriers warm, was found to be similar to the mobility of cold carriers. A model was developed that provides a quantitative description of the experimental carrier cooling dynamics, including electron-phonon coupling, phonon-phonon coupling and the Auger mechanism. In the Pb and Sn alloy the duration of the hot carrier regime was extended as a result of the slower decay of optical phonons. The findings offer an intuitive link between macroscopic properties and the underlying microscopic energy transfer processes, and suggest new routes to control the carrier cooling process in metal halide perovskites to optimize optoelectronic devices.</p>

Topics
  • perovskite
  • mobility
  • semiconductor
  • tin
  • spectroscopy