Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schörner, Maximilian

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Sodium-potassium system at high pressure6citations

Places of action

Chart of shared publication
Glenzer, Siegfried H.
1 / 1 shared
Redmer, Ronald
1 / 4 shared
Frost, Mungo
1 / 4 shared
Mcbride, Emma Elizabeth
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Glenzer, Siegfried H.
  • Redmer, Ronald
  • Frost, Mungo
  • Mcbride, Emma Elizabeth
OrganizationsLocationPeople

article

Sodium-potassium system at high pressure

  • Glenzer, Siegfried H.
  • Redmer, Ronald
  • Frost, Mungo
  • Mcbride, Emma Elizabeth
  • Schörner, Maximilian
Abstract

Mixtures of sodium and potassium differ substantially from the pure elements, while retaining the high compressibility, which is important to the complex behavior of dense alkali metals. We present powder x-ray diffraction of mixtures of Na and K compressed in diamond anvil cells to 48 GPa at 295 K. This reveals two stoichiometric intermetallics: an Na<sub>2</sub>K phase known at ambient pressure and low temperature, and a novel NaK phase formed of interpenetrating sodium and potassium diamond lattices. Density functional theory calculations find the new phase to be dynamically stable and, in contrast to pure alkali metals, reveal decreasing electron localization with applied pressure. Depending on the mixture composition these intermetallics are accompanied by sodium or potassium rich phases suggesting that there are no other intermetallics under the range of <i>P-T</i> conditions studied. Alkali-metal mixtures have seen little study at high pressure and represent an unusual class of materials with very high compressibility and multiple constituents. Such materials exhibit significant compression at experimentally accessible pressures and open a way to measure multispecies structures at high compression. These results challenge structural finding algorithms for mixtures in high-pressure conditions.

Topics
  • density
  • impedance spectroscopy
  • phase
  • theory
  • Sodium
  • powder X-ray diffraction
  • Potassium
  • density functional theory
  • intermetallic