Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lu, Zhilun

  • Google
  • 5
  • 32
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Design for Additive Manufacturing and Finite Element Analysis of Fe-Mn Biodegradable Fracture Fixation Plate with Varying Porosity Levels1citations
  • 2022Preparation of Elastomeric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Flexible Dielectric Materials4citations
  • 2022Preparation of flexible dielectric nanocomposites using nanocellulose and recycled alum sludge for wearable technology applicationscitations
  • 2020Field-induced magnetic incommensurability in multiferroic Ni 3 TeO 613citations
  • 2020Field-induced magnetic incommensurability in multiferroic Ni3TeO613citations

Places of action

Chart of shared publication
Alkhreisat, Mohammad
1 / 1 shared
Kahwash, Fadi
1 / 6 shared
Shaikh, Mustafiz
1 / 1 shared
Shyha, Islam
3 / 30 shared
Wilson, Callum
1 / 1 shared
Wang, Bowen
1 / 2 shared
Orourke, Dominic
1 / 5 shared
Onyianta, Amaka J.
1 / 6 shared
Sun, Dongyang
2 / 6 shared
See, Chan H.
1 / 8 shared
Popescu, Carmen-Mihaela
1 / 3 shared
Saw, Bernard L. H.
1 / 1 shared
Dorris, Mark
2 / 6 shared
Onyianta, A.
1 / 1 shared
Wilson, C.
1 / 9 shared
See, Chan Hwang
1 / 7 shared
Popescu, Carmen
1 / 1 shared
Orourke, D.
1 / 1 shared
Saw, L.
1 / 1 shared
Bartkowiak, M.
2 / 15 shared
Niedermayer, Ch.
2 / 3 shared
Toth, S.
2 / 2 shared
Retuerto, M.
2 / 2 shared
Lass, J.
2 / 2 shared
Andersen, Ch. Røhl
1 / 1 shared
Toft-Petersen, Rasmus
2 / 4 shared
Lefmann, Kim
2 / 12 shared
Leerberg, H. K.
2 / 2 shared
Birkemose, S.
2 / 2 shared
Birk, J. Okkels
2 / 2 shared
Stuhr, U.
2 / 4 shared
Andersen, Christopher Røhl Yskes
1 / 3 shared
Chart of publication period
2023
2022
2020

Co-Authors (by relevance)

  • Alkhreisat, Mohammad
  • Kahwash, Fadi
  • Shaikh, Mustafiz
  • Shyha, Islam
  • Wilson, Callum
  • Wang, Bowen
  • Orourke, Dominic
  • Onyianta, Amaka J.
  • Sun, Dongyang
  • See, Chan H.
  • Popescu, Carmen-Mihaela
  • Saw, Bernard L. H.
  • Dorris, Mark
  • Onyianta, A.
  • Wilson, C.
  • See, Chan Hwang
  • Popescu, Carmen
  • Orourke, D.
  • Saw, L.
  • Bartkowiak, M.
  • Niedermayer, Ch.
  • Toth, S.
  • Retuerto, M.
  • Lass, J.
  • Andersen, Ch. Røhl
  • Toft-Petersen, Rasmus
  • Lefmann, Kim
  • Leerberg, H. K.
  • Birkemose, S.
  • Birk, J. Okkels
  • Stuhr, U.
  • Andersen, Christopher Røhl Yskes
OrganizationsLocationPeople

article

Field-induced magnetic incommensurability in multiferroic Ni3TeO6

  • Bartkowiak, M.
  • Niedermayer, Ch.
  • Toth, S.
  • Retuerto, M.
  • Lass, J.
  • Toft-Petersen, Rasmus
  • Lefmann, Kim
  • Leerberg, H. K.
  • Lu, Zhilun
  • Birkemose, S.
  • Birk, J. Okkels
  • Stuhr, U.
  • Andersen, Christopher Røhl Yskes
Abstract

Using single-crystal neutron diffraction we show that the magnetic structure Ni<sub>3</sub>TeO<sub>6 </sub>at fields above 8.6 T along the <i>c</i><b> </b>axis and low temperature changes from a commensurate collinear antiferromagnetic structure with spins along <i>c</i> and ordering vector <i>Q</i><sub>C</sub>=(001.5) to a conical spiral with propagation vector <i>Q</i><sub>IC</sub>=(001.5±<i>δ</i>), <i>δ</i>∼0.18, having a significant spin component in the (<i>a</i>,<i>b</i>) plane. We determine the phase diagram of this material in magnetic fields up to 10.5 T along <i>c</i> and show the phase transition between the low field and conical spiral phases is of first order by observing a discontinuous jump of the ordering vector. <i>Q</i><sub>IC</sub> is found to drift both as a function of magnetic field and temperature. Preliminary inelastic neutron-scattering data reveal that the spin-wave gap in zero field has minima exactly at <i>Q</i><sub>IC</sub> and a gap of about 1.1 meV consisting with a crossover around 8.6 T. Further, a simple magnetic Hamiltonian accounting in broad terms for these is presented. Our findings confirm the exclusion of the inverse Dzyaloshinskii-Moriya interaction as a cause for the giant magnetoelectric due to symmetry arguments. In its place we advocate for the symmetric exchange striction as the origin of this effect.

Topics
  • impedance spectroscopy
  • phase
  • phase transition
  • neutron diffraction
  • phase diagram
  • ion chromatography