Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liu, Xinjun

  • Google
  • 1
  • 2
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Effect of electrode roughness on electroforming in HfO2 and defect-induced moderation of electric-field enhancement44citations

Places of action

Chart of shared publication
Venkatachalam, Dinesh Kumar
1 / 3 shared
Nandi, Sanjoy
1 / 7 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Venkatachalam, Dinesh Kumar
  • Nandi, Sanjoy
OrganizationsLocationPeople

article

Effect of electrode roughness on electroforming in HfO2 and defect-induced moderation of electric-field enhancement

  • Venkatachalam, Dinesh Kumar
  • Nandi, Sanjoy
  • Liu, Xinjun
Abstract

<p>The roughness of Pt electrodes is shown to have a direct impact on the electroforming characteristics of Pt/Ti/HfO2/Pt device structures. Specifically, an increase in roughness leads to a reduction in the electroforming voltage of HfO2, an increase in the failure rate of devices, and a corresponding reduction in resistive switching reliability. A finite-element model is used to investigate the significance of local electric-field enhancement on the breakdown process. This simulation shows that high-aspect-ratio asperities can produce field enhancements of more than an order of magnitude but that the generation and redistribution of defects moderate this effect prior to dielectric breakdown. As a consequence, the effect of field enhancement is less than anticipated from the initial electric-field distribution alone. Finally, it is argued that the increase in the device failure rate with increasing electrode roughness derives partly from an increase in the film defect density and effective device area and that these effects contribute to the reduction in breakdown voltage.</p>

Topics
  • density
  • impedance spectroscopy
  • simulation
  • laser emission spectroscopy
  • defect