Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hosseini, Seyyed Ahmad

  • Google
  • 5
  • 13
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Enhanced fault tolerance in biomimetic hierarchical materials: A simulation study5citations
  • 2023Failure Precursors and Failure Mechanisms in Hierarchically Patterned Paper Sheets in Tensile and Creep Loading6citations
  • 2022Hierarchical Slice Patterns Inhibit Crack Propagation in Brittle Sheets6citations
  • 2021The influence of carbon nanotube coated-carbon fibers on thermal residual stresses of Multi-Scale hybrid composites: Analytical approach7citations
  • 2021Beam network model for fracture of materials with hierarchical microstructure10citations

Places of action

Chart of shared publication
Moretti, Paolo
4 / 42 shared
Zaiser, Michael
4 / 16 shared
Pournajar, Mahshid
2 / 3 shared
Mäkinen, Tero
2 / 11 shared
Alava, Mikko
1 / 10 shared
Himmler, Marcus
1 / 1 shared
Koivisto, Juha
1 / 14 shared
Redel, Michael
1 / 2 shared
Alava, Mikko J.
1 / 19 shared
Schubert, Dirk W.
1 / 20 shared
Malekimoghadam, Reza
1 / 2 shared
Icardi, Ugo
1 / 12 shared
Konstantinidis, Dimitrios
1 / 2 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Moretti, Paolo
  • Zaiser, Michael
  • Pournajar, Mahshid
  • Mäkinen, Tero
  • Alava, Mikko
  • Himmler, Marcus
  • Koivisto, Juha
  • Redel, Michael
  • Alava, Mikko J.
  • Schubert, Dirk W.
  • Malekimoghadam, Reza
  • Icardi, Ugo
  • Konstantinidis, Dimitrios
OrganizationsLocationPeople

article

Failure Precursors and Failure Mechanisms in Hierarchically Patterned Paper Sheets in Tensile and Creep Loading

  • Hosseini, Seyyed Ahmad
  • Pournajar, Mahshid
  • Moretti, Paolo
  • Mäkinen, Tero
  • Alava, Mikko
  • Zaiser, Michael
Abstract

Funding Information: M.P., S.A.H., and M.Z acknowledge support from the DFG, under grant No. Za171/9-3. M.A. and T.M. acknowledge support from the Academy of Finland (Center of Excellence program, 278367 and 317464), FinnCERES flagship (151830423), Business Finland (211835 and 211909), and Future Makers programs. Publisher Copyright: © 2023 American Physical Society. ; Quasibrittle materials endowed with (statistically) self-similar hierarchical microstructures show distinct failure patterns that deviate from the standard scenario of damage accumulation followed by crack nucleation and growth. Here we study the failure of paper sheets with hierarchical slice patterns as well as nonhierarchical and unpatterned reference samples, considering both uncracked samples and samples containing a macroscopic crack. Failure is studied under displacement-controlled tensile loading as well as under creep conditions. Acoustic emission records and surface strain patterns are recorded alongside stress-strain and creep curves. The measurements demonstrate that hierarchical patterning efficiently mitigates against strain localization and crack propagation. In tensile loading, this results in a significantly increased residual strength of cracked samples. Under creep conditions, for a given range of lifetimes, hierarchically patterned samples are found to sustain larger creep strains at higher stress levels; their creep curves show unusual behavior characterized by multiple creep rate minima due to the repeated arrest of emergent localization bands. ; Peer reviewed

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • crack
  • strength
  • acoustic emission
  • creep