People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tiercelin, Nicolas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Plasmon-driven creation of magnetic topological structures
- 2023The Role of Ferromagnetic Layer Thickness and Substrate Material in Spintronic Emitterscitations
- 2022Ultrafast manipulation of magnetic anisotropy in a uniaxial intermetallic heterostructure TbCo 2 /FeCocitations
- 2022Highly Efficient Terahertz Spintronic Emitter Integrated with Optimized Photonic Crystalcitations
- 2022Composite Multiferroic Terahertz Emitter: Polarization Control via an Electric Fieldcitations
- 2021Polarization control of THz emission using spin-reorientation transition in spintronic heterostructurecitations
- 2021THz spintronic emitters with magnetoelectric control of the polarization and applications to polarimetry
- 2021Increasing the efficiency of a spintronic thz emitter based on wse2/fecocitations
- 2021[Invited] THz spintronic emitters with magnetoelectric control of the polarization and applications to polarimetry
- 2020E-field control of magnetization and susceptibility of AFE-based YIG/PLZST heterostructurecitations
- 2020Photoinduced spin dynamics in a uniaxial intermetallic heterostructure $$hbox {TbCo}_2/hbox {FeCo}$$citations
- 2020Ferromagnetism in the Ferromagnetic Yttrium Iron Garnet Film/Ferromagnetic Intermetallic Compound Heterostructurecitations
- 2019Resistivity of Manganite Thin Film Under Straincitations
- 2019Magnetic Interactions on Oxide Ferromagnet/Ferromagnetic Intermetallide Interfacecitations
- 2019MOKE Magnetometer Studies of Evaporated Ni and Ni/Cu Thin Films onto Different Substratescitations
- 2019Intrinsic versus shape anisotropy in micro-structured magnetostrictive thin films for magnetic surface acoustic wave sensorscitations
- 2019Intrinsic versus shape anisotropy in micro-structured magnetostrictive thin films for magnetic surface acoustic wave sensorscitations
- 2018SPIN INTERACTIONS AT THE INTERFACES FERROMAGNETIC OXIDE/FERROMAGNETIC INTERMETALLIC SUPERLATTICE
- 20141 to 220 GHz complex permittivity behavior of flexible polydimethylsiloxane substratecitations
- 2014Effect of thickness and deposition rate on the structural and magnetic properties of evaporated Fe/Al thin filmscitations
- 2014Characterization of multi-layered nanopore structure
- 2012A millimeter-wave elastomeric microstrip phase shiftercitations
- 2003Silicon based optical scanner using PDMS as torsion springscitations
Places of action
Organizations | Location | People |
---|
article
Composite Multiferroic Terahertz Emitter: Polarization Control via an Electric Field
Abstract
International audience ; Electrical control of conjugate degrees of freedom in multiferroics provides the advantage of reducing energy consumption to femto- and even attojoules per switch in spintronics and memory devices. This is achieved through the development of technologies that make it possible to fabricate artificial materials with constantly improving properties. Here, we present the design, physics, and characteristics of a composite multiferroic spintronic emitter, which provides electrical control of the emitted terahertz (THz) wave polarization. The effect is due to electrical control of the magnetization in a high-quality magnetostrictive superlattice, TbCo2/FeCo, deposited on an anisotropic piezoelectric substrate. In our approach, several mechanisms are realized in the system simultaneously: the strain-mediated coupling of the magnetic and piezoelectric subsystems, which operate in the range of the spin-reorientation transition of the magnetic superlattice, and THz-wave generation in the superlattice by an optical femtosecond pulse. This provides flexibility and control of the set of parameters. We determine the magnetoelectric parameter, which is responsible for THz polarization control. Our results offer a significant fundamental insight into the physics of composite multiferroic systems that can be used for applications of multiferroicity, primarily for THz spintronic emitters. We believe that our findings represent a decisive step towards technologies for other types of spintronic and memory devices.