People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Corre, Vincent Le
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Ion-induced field screening as a dominant factor in perovskite solar cell operational stabilitycitations
- 2022Revealing the doping density in perovskite solar cells and its impact on device performancecitations
- 2022Quantification of Efficiency Losses Due to Mobile Ions in Perovskite Solar Cells via Fast Hysteresis Measurementscitations
- 2021Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurementscitations
- 2021Understanding Dark Current-Voltage Characteristics in Metal-Halide Perovskite Single Crystalscitations
- 2021Universal Current Losses in Perovskite Solar Cells Due to Mobile Ionscitations
- 2020Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskitescitations
- 2018Carrier Transport and Recombination in Efficient “All-Small-Molecule” Solar Cells with the Nonfullerene Acceptor IDTBRcitations
- 2017Numerical modeling of the effective ductile damage of macroporous aluminacitations
Places of action
Organizations | Location | People |
---|
article
Understanding Dark Current-Voltage Characteristics in Metal-Halide Perovskite Single Crystals
Abstract
<p>Hybrid halide perovskites have great potential for application in optoelectronic devices. However, an understanding of some basic properties, such as charge-carrier transport, remains inconclusive, mainly due to the mixed ionic and electronic nature of these materials. Here, we perform temperature-dependent pulsed-voltage space-charge-limited current measurements to provide a detailed look into the electronic properties of methylammonium lead tribromide (MAPbBr(3)) and methylammonium lead triiodide (MAPbI(3)) single crystals. We show that the background carrier density in these crystals is orders of magnitude higher than that expected from thermally excited carriers from the valence band. We highlight the complexity of the system via a combination of experiments and drift-diffusion simulations and show that different factors, such as thermal injection from the electrodes, temperature-dependent mobility, and trap and ion density, influence the free-carrier concentration. We experimentally determine effective activation energies for conductivity of (349 +/- 10) meV for MAPbBr3 and (193 +/- 12) meV for MAPbI(3), which includes the sum of all of these factors. We point out that fitting the dark current density-voltage curve with a drift-diffusion model allows for the extraction of intrinsic parameters, such as mobility and trap and ion density. From simulations, we determine a charge-carrier mobility of 12.9 cm(2)/Vs, a trap density of 1.52 x 10(13) cm(-3), and an ion density of 3.19 x 10(12) cm(-3) for MAPbBr(3) single crystals. Insights into charge-carrier transport in metal-halide perovskite single crystals will be beneficial for device optimization in various optoelectronic applications.</p>