People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grande, P. L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2020Elucidating the capability of electron backscattering for 3D nano-structure determinationcitations
- 2020The effect of ion implantation on reflection electron energy loss spectroscopycitations
- 2019Characterization of oxygen self-diffusion in TiO2 resistive-switching layers by nuclear reaction profilingcitations
- 2018The influence of shallow core levels on the shape of REELS spectracitations
- 2015Neutralization and wake effects on the Coulomb explosion of swift H2+ ions traversing thin filmscitations
- 2014The use of electron Rutherford backscattering to characterize novel electronic materials as illustrated by a case study of sputter-deposited NbOx filmscitations
Places of action
Organizations | Location | People |
---|
article
Neutralization and wake effects on the Coulomb explosion of swift H2+ ions traversing thin films
Abstract
<p>The Coulomb explosion of small cluster beams can be used to measure the dwell time of fragments traversing amorphous films. Therefore, the thickness of thin films can be obtained with the so-called Coulomb depth profiling technique using relatively high cluster energies where the fragments are fully ionized after breakup. Here we demonstrate the applicability of Coulomb depth profiling technique at lower cluster energies where neutralization and wake effects come into play. To that end, we investigated 50-200 keV/u H<sub>2</sub><sup>+</sup> molecular ions impinging on a 10 nm TiO<sub>2</sub> film and measured the energy of the backscattered H<sup>+</sup> fragments with high-energy resolution. The effect of the neutralization of the H<sup>+</sup> fragments along the incoming trajectory before the backscattering collision is clearly observed at lower energies through the decrease of the energy broadening due to the Coulomb explosion. The reduced values of the Coulomb explosion combined with full Monte Carlo simulations provide compatible results with those obtained at higher cluster energies where neutralization is less important. The results are corroborated by electron microscopy measurements.</p>