Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Breillat, Christelle

  • Google
  • 1
  • 11
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Synapse specific and plasticity-regulated AMPAR mobility tunes synaptic integration2citations

Places of action

Chart of shared publication
Penn, Andrew C.
1 / 1 shared
Sainlos, Matthieu
1 / 1 shared
Ducros, Mathieu
1 / 1 shared
Marais, Sébastien
1 / 1 shared
Lemoigne, Cécile
1 / 1 shared
Choquet, Daniel
1 / 3 shared
Nowacka, Agata
1 / 1 shared
Daburon, Sophie
1 / 1 shared
Bessa-Neto, Diogo
1 / 1 shared
Zieger, Hanna L.
1 / 1 shared
Getz, Angela
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Penn, Andrew C.
  • Sainlos, Matthieu
  • Ducros, Mathieu
  • Marais, Sébastien
  • Lemoigne, Cécile
  • Choquet, Daniel
  • Nowacka, Agata
  • Daburon, Sophie
  • Bessa-Neto, Diogo
  • Zieger, Hanna L.
  • Getz, Angela
OrganizationsLocationPeople

document

Synapse specific and plasticity-regulated AMPAR mobility tunes synaptic integration

  • Penn, Andrew C.
  • Sainlos, Matthieu
  • Ducros, Mathieu
  • Marais, Sébastien
  • Lemoigne, Cécile
  • Choquet, Daniel
  • Nowacka, Agata
  • Daburon, Sophie
  • Breillat, Christelle
  • Bessa-Neto, Diogo
  • Zieger, Hanna L.
  • Getz, Angela
Abstract

<jats:title>Abstract</jats:title><jats:p>Synaptic responses adapt to fast repetitive inputs during bursts of neuronal network activity over timescales of milliseconds to seconds, either transiently facilitating or depressing. This high-frequency stimulus-dependent short-term synaptic plasticity (HF-STP) relies on a number of molecular processes that collectively endow synapses with filtering properties for information processing, optimized for the transmission of certain input frequencies and patterns in distinct circuits<jats:sup>1–3</jats:sup>. Changes in HF-STP are traditionally thought to stem from changes in pre-synaptic transmitter release<jats:sup>1,2</jats:sup>, but post-synaptic modifications in receptor biophysical properties or surface diffusion also regulate HF-STP<jats:sup>4–11</jats:sup>. A major challenge in understanding synapse function is to decipher how pre- and post-synaptic mechanisms synergistically tune synaptic transmission efficacy during HF-STP, and to determine how neuronal activity modifies post-synaptic signal computation and integration to diversify neuronal circuit function. Here, taking advantage of new molecular tools to directly visualize glutamate release<jats:sup>12</jats:sup>and specifically manipulate the surface diffusion of endogenous AMPAR in intact circuits<jats:sup>13</jats:sup>, we define the respective contributions of pre-synaptic glutamate release, AMPAR desensitization and surface mobility to frequency-dependent synaptic adaptation. We demonstrate that post-synaptic gain control and signal integration capacity in synaptic networks is influenced by synapse-specific differences in AMPAR desensitization and diffusion-trapping characteristics that are shaped by molecular signaling events recruited during LTP.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • mobility
  • plasticity