People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Palatinus, Lukas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction datacitations
- 2024Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II): discovery of the first ruthenium tetrapyrrole <i>cis</i>-dicarbonyl complex by X-ray and electron diffraction
- 2023Quantitative three-dimensional local order analysis of nanomaterials through electron diffractioncitations
- 2023Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction datacitations
- 2023Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data
- 2022Polar Crystal Habit and 3D Electron Diffraction Reveal the Malaria Pigment Hemozoin as a Selective Mixture of Centrosymmetric and Chiral Stereoisomerscitations
- 2021ELECTRON DIFFRACTION - A NEW TOOL FOR CRYSTAL STRUCTURE SOLUTIONS
- 20193D Electron Diffraction: The Nanocrystallography Revolutioncitations
- 2017Unusual ferroelectric and magnetic phases in multiferroic 2H-BaMnO3 ceramicscitations
Places of action
Organizations | Location | People |
---|
document
Polar Crystal Habit and 3D Electron Diffraction Reveal the Malaria Pigment Hemozoin as a Selective Mixture of Centrosymmetric and Chiral Stereoisomers
Abstract
<jats:title>Abstract</jats:title><jats:p>Detoxification of heme in Plasmodium depends on its crystallization into hemozoin. This pathway is a major target of antimalarial drugs. X-ray powder diffraction has established that the unit cell contains a cyclic hematin dimer, yet the pro-chiral nature of heme supports formation of four distinct stereoisomers, two centrosymmetric and two chiral enantiomers. Here we apply emerging methods of in situ cryo-electron tomography and diffraction to obtain a definitive structure of biogenic hemozoin. Individual crystals take a striking polar morphology. Diffraction analysis, supported by density functional theory, indicates a compositional mixture of one centrosymmetric and one chiral dimer, whose absolute configuration has been determined on the basis of crystal morphology and interaction with the aqueous medium. Structural modeling of the heme detoxification protein suggests a mechanism for dimer selection. The refined structure of hemozoin should serve as a guide to new drug development.</jats:p>