Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gilmour, Katie

  • Google
  • 3
  • 8
  • 37

Northumbria University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Microbially induced calcium carbonate precipitation through CO2 sequestration via an engineered bacillus subtilis17citations
  • 2022Microbial community of MX80 bentonite and their interaction with ironcitations
  • 2021An indigenous iron-reducing microbial community from MX80 bentonite - A study in the framework of nuclear waste disposal20citations

Places of action

Chart of shared publication
Zhang, Meng
1 / 12 shared
Haystead, Jamie
1 / 1 shared
Dade-Robertson, Martyn
1 / 7 shared
Wright, Jennifer
1 / 1 shared
Ghimire, Prakriti Sharma
1 / 1 shared
James, Paul
1 / 2 shared
Davie, Colin
2 / 3 shared
Gray, Neil
2 / 2 shared
Chart of publication period
2024
2022
2021

Co-Authors (by relevance)

  • Zhang, Meng
  • Haystead, Jamie
  • Dade-Robertson, Martyn
  • Wright, Jennifer
  • Ghimire, Prakriti Sharma
  • James, Paul
  • Davie, Colin
  • Gray, Neil
OrganizationsLocationPeople

article

Microbial community of MX80 bentonite and their interaction with iron

  • Davie, Colin
  • Gilmour, Katie
  • Gray, Neil
Abstract

<jats:p>MX80 bentonite has been selected as the buffer and backfill in a proposed method of long-term deep geological storage of nuclear waste. Extensive studies have been carried out on the geomechanical properties of MX80; however, it is not clear what effect microbes will have on its ability to function as an effective barrier. Specifically, in the UK, as carbon steel waste canisters will contribute iron oxides and rust products to the immediate environment, iron-reducing bacteria are of interest. Iron-reducing bacteria can reduce structural or external Fe (III) to Fe (II) and some species are adapted to high temperatures and low water availability, in keeping with conditions within the waste repository. Indigenous iron-interacting bacteria have been identified in compacted MX80 and microbially-influenced iron-reduction was observed in groundwater salinity up to 0.45M NaCl. Experiments investigating gas production, and silica-solubilising abilities of this community were carried out. Further experiments in pressurised test cells investigated microbial activities at the clay / steel interface. Significant increases in hydrogen production were observed when microbes were present, and biogenically influenced changes in structure and appearance of MX80 were seen in all experiments. Additionally, silica release occurred, likely coupled to metal / microbe interactions. Corrosion products differed depending on microbial presence following incubation in test cells. Biogenic transformation of clay minerals through iron reduction or release of silica to groundwater could significantly impact the geomechanical properties of MX80, as indicated by observed changes in clay plasticity, and ultimately this could affect the behavior of the material as a barrier.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • Carbon
  • corrosion
  • experiment
  • steel
  • Hydrogen
  • iron
  • plasticity