Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Watson, Fergus

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Efficiency and novelty of using environmental swabs for dry surface biofilm recoverycitations

Places of action

Chart of shared publication
Keevil, Charles
1 / 9 shared
Wilks, Sandra
1 / 5 shared
Chewins, John
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Keevil, Charles
  • Wilks, Sandra
  • Chewins, John
OrganizationsLocationPeople

article

Efficiency and novelty of using environmental swabs for dry surface biofilm recovery

  • Keevil, Charles
  • Watson, Fergus
  • Wilks, Sandra
  • Chewins, John
Abstract

Studies on the epidemiology of dry surface biofilms within healthcare has shown an almost universal distribution across frequently touched items.Despite a growing body of evidence for dry surface biofilms in hospitals little attention has been paid to the recovery capacity of techniques used to detect these microbial communities. Biofilms are inherently difficult to remove from surfaces due to adhesive substances within their matrix and may act as sources of infection but to what extent is largely unknown. In this study we evaluate the recovery efficiencies of commonly used environmental swabs against dry surface biofilms containing 7.24-Log10 Acinetobacter baumannii/cm2, using a drip flow reactor and desiccation cycle. Biofilm presence was visually confirmed using episcopic differential interference contrast microscopy combined with epifluorescence and quantified using sonicated viable plate counts. The swab materials used comprised of foam, viscose and cotton, all of which were pre-moistened using a buffer solution. The surfaces were vigorously swabbed by each material type and the resultant microbe populations for both swabs and remaining dry surface biofilms were quantified. Our results found foam tipped swabs to be superior, detecting on average 30% of the original dry surface biofilm contamination; followed by viscose (6%) and cotton (3%). However, no distinct difference was revealed in the concentration of microbes remaining on the surface after swabbing for each swab type suggesting there is variation in the capacity for each swab to release biofilm associated microorganisms. We conclude whilst environmental swabs do possess the ability to detect biofilms on dry surfaces; the reduced efficiencies are likely to cause an underestimation of the microbes present and should be considered during clinical application.

Topics
  • impedance spectroscopy
  • surface
  • microscopy