Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lincoln, Reece L.

  • Google
  • 6
  • 4
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Dataset for computational and experimental buckling analysis of constant-stiffness and variable-stiffness composite cylinderscitations
  • 2023Increasing reliability of axially compressed cylinders through stiffness tailoring and optimization5citations
  • 2021Optimization of imperfection-insensitive continuous tow sheared rocket launch structures8citations
  • 2021Manufacture and buckling test of a variable-stiffness, variable-thickness composite cylinder under axial compression7citations
  • 2020Imperfection-Insensitive Continuous Tow-Sheared Cylinders22citations
  • 2020Imperfection-Insensitive Continuous Tow Sheared Cylindercitations

Places of action

Chart of shared publication
Weaver, Pm
6 / 560 shared
Zympeloudis, Evangelos D.
1 / 3 shared
Groh, Rainer Mj
6 / 45 shared
Pirrera, Alberto
6 / 85 shared
Chart of publication period
2024
2023
2021
2020

Co-Authors (by relevance)

  • Weaver, Pm
  • Zympeloudis, Evangelos D.
  • Groh, Rainer Mj
  • Pirrera, Alberto
OrganizationsLocationPeople

article

Increasing reliability of axially compressed cylinders through stiffness tailoring and optimization

  • Weaver, Pm
  • Groh, Rainer Mj
  • Pirrera, Alberto
  • Lincoln, Reece L.
Abstract

The capabilities of the rapid tow shearing (RTS) process are explored to reduce the well-known imperfection sensitivity of axially compressed cylindrical shells. RTS deposits curvilinear carbon fibre tapes with a fibre-angle-thickness coupling that enables the in situ manufacturing of embedded rings and stringers. By blending the material’s elastic modulus and wall thickness smoothly across the cylindrical surface, the load paths can be redistributed favourably with a minimal-design approach that contains part count and weight while ameliorating imperfection sensitivity. A genetic algorithm that incorporates realistic manufacturing imperfections and axial stiffness penalty is used to maximize the 99.9% reliability load of straight fibre (SF) and RTS cylinders. The axial stiffness penalty ensures that reliability does not come at the expense of stiffness. The first-order second-moment method is used to calculate statistical moments that enable an estimate of the 99.9% reliability load. Due to the fibre-angle-thickness coupling of RTS, buckling data are normalized by mass and thickness. Compared to a quasi-isotropic laminate, which corresponds to the optimal eight-layer design for a perfect cylinder, the optimized SF and RTS laminates have a 6% and 8% greater 99.9% normalized reliability load. By relaxing the axial stiffness penalty, the performance benefit can be increased such that SF and RTS cylinders exceed the 99.9% normalized reliability load of an eight-layer quasi-isotropic laminate by 23% and 37%, respectively. Both improvements (with and without penalty functions) stem largely from a reduction in the variance of the buckling-load distribution, thereby demonstrating the potential of fibre-steered cylinders in reducing the imperfection sensitivity of cylindrical shells.

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • isotropic