Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Steeb, Holger

  • Google
  • 15
  • 53
  • 104

University of Stuttgart

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2024Chitin/Chitosan Biocomposite Foams with Chitins from Different Organisms for Sound Absorption4citations
  • 2024Development of stochastically reconstructed 3D porous media micromodels using additive manufacturing: numerical and experimental validation1citations
  • 2023Estimation of Capillary‐Associated NAPL‐Water Interfacial Areas for Unconsolidated Porous Media by Kinetic Interface Sensitive (KIS) Tracer Method6citations
  • 2023Autonomous Adaption of Intelligent Humidity‐Programmed Hydrogel Patches for Tunable Stiffness and Drug Release3citations
  • 2023High‐speed fatigue testing of high‐performance concretes and parallel frequency sweep characterization2citations
  • 2023The high cycle fatigue testing of High‐Performance Concretes using high frequency excitation6citations
  • 2022Acoustic waves in saturated porous media with gas bubbles5citations
  • 2022Influence of humidity on the rheology of thermoresponsive shape memory polymerscitations
  • 2021Investigation of the influence of moisture content on fatigue behaviour of HPC by using DMA and XRCTcitations
  • 2020Direct characterization of solute transport in unsaturated porous media using fast X-ray synchrotron microtomography77citations
  • 2015Hydraulic properties of sintered porous glass bead systemscitations
  • 2013Hierarchical architecture and modeling of bio-inspired mechanically adaptive polymer nanocompositescitations
  • 2011On recoverable strain-stress relationships in shape memory polymer nanocompositescitations
  • 2011On recoverable strain and stress relationships for shape memory polymer nanocompositescitations
  • 2005Modelling of thin polymer filmscitations

Places of action

Chart of shared publication
Prinz, Carsten
1 / 6 shared
Oehlsen, Nina
1 / 2 shared
Zhou, Xiaoru
1 / 1 shared
Dyballa, Michael
1 / 1 shared
Wachsmann, Sebastian B.
1 / 1 shared
Arweiler, Christine
1 / 1 shared
Leistner, Philip
1 / 6 shared
Ruf, Matthias
2 / 4 shared
Laschat, Sabine
1 / 8 shared
Stegbauer, Linus
1 / 3 shared
Garrecht, Harald
2 / 10 shared
Yiotis, Andreas
1 / 1 shared
Varouchakis, Emmanouil A.
1 / 1 shared
Tzortzakis, Stelios
1 / 1 shared
Manousidaki, Mary
1 / 1 shared
Karadimitriou, Nikolaos
3 / 3 shared
Lee, Dongwon
1 / 1 shared
Tatomir, Alexandru
1 / 1 shared
Pötzl, Christopher
1 / 1 shared
Sauter, Martin
1 / 1 shared
Helmig, Rainer
1 / 1 shared
Class, Holger
1 / 1 shared
Gao, Huhao
1 / 1 shared
Licha, Tobias
1 / 1 shared
Abdullah, Hiwa
1 / 2 shared
Wiedemann, Yvonne
1 / 1 shared
Pflumm, Stephan
1 / 1 shared
Fauser, Dominik
2 / 2 shared
Ludwigs, Sabine
1 / 9 shared
Lunter, Dominique
1 / 2 shared
Safaraliyev, Javidan
1 / 1 shared
Madadi, Hamid
2 / 2 shared
Kurzeja, Patrick
1 / 1 shared
Katzmann, Josef
1 / 1 shared
Markert, Martin
1 / 1 shared
Birtel, Veit
1 / 5 shared
Niasar, Vahid
1 / 3 shared
Godinho, Jose
1 / 1 shared
Rabbani, Arash
1 / 1 shared
Hasan, Sharul
1 / 1 shared
Vo, Nghia T.
1 / 4 shared
An, Senyou
1 / 1 shared
Frijters, Stefan
1 / 1 shared
Gueven, Ibrahim
1 / 2 shared
Harting, J.
1 / 4 shared
Luding, Stefan
1 / 13 shared
Kazakeviciute-Makovska, Rasa
2 / 2 shared
Altenbach, Holm
1 / 13 shared
Forest, Samuel
1 / 142 shared
Krivtsov, Anton
1 / 1 shared
Kazakevičiūtė-Makovska, Rasa
1 / 1 shared
Diebels, Stefan
1 / 12 shared
Johlitz, Michael
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2015
2013
2011
2005

Co-Authors (by relevance)

  • Prinz, Carsten
  • Oehlsen, Nina
  • Zhou, Xiaoru
  • Dyballa, Michael
  • Wachsmann, Sebastian B.
  • Arweiler, Christine
  • Leistner, Philip
  • Ruf, Matthias
  • Laschat, Sabine
  • Stegbauer, Linus
  • Garrecht, Harald
  • Yiotis, Andreas
  • Varouchakis, Emmanouil A.
  • Tzortzakis, Stelios
  • Manousidaki, Mary
  • Karadimitriou, Nikolaos
  • Lee, Dongwon
  • Tatomir, Alexandru
  • Pötzl, Christopher
  • Sauter, Martin
  • Helmig, Rainer
  • Class, Holger
  • Gao, Huhao
  • Licha, Tobias
  • Abdullah, Hiwa
  • Wiedemann, Yvonne
  • Pflumm, Stephan
  • Fauser, Dominik
  • Ludwigs, Sabine
  • Lunter, Dominique
  • Safaraliyev, Javidan
  • Madadi, Hamid
  • Kurzeja, Patrick
  • Katzmann, Josef
  • Markert, Martin
  • Birtel, Veit
  • Niasar, Vahid
  • Godinho, Jose
  • Rabbani, Arash
  • Hasan, Sharul
  • Vo, Nghia T.
  • An, Senyou
  • Frijters, Stefan
  • Gueven, Ibrahim
  • Harting, J.
  • Luding, Stefan
  • Kazakeviciute-Makovska, Rasa
  • Altenbach, Holm
  • Forest, Samuel
  • Krivtsov, Anton
  • Kazakevičiūtė-Makovska, Rasa
  • Diebels, Stefan
  • Johlitz, Michael
OrganizationsLocationPeople

article

Acoustic waves in saturated porous media with gas bubbles

  • Kurzeja, Patrick
  • Steeb, Holger
Abstract

<jats:p>The present framework employs various interface characteristics of gas bubbles into a continuum description of acoustics in porous media. It first extends the bubble compressibility in classic models by surface tension and higher-order curvature effects. This modelling extension is significantly relevant to estimate the impact of interface effects, e.g. on emerging nano-scale bubbles or pickering emulsions. The gas bubble dynamics is then homogenized to derive a manageable set of continuum equations. Respective assumptions and limitations are summarized in this process to provide a quick reference when choosing the compromise between a model’s complexity and applicability. The acoustic response of a water-saturated sandstone with gas bubbles is finally evaluated with respect to the practical importance at ambient and reservoir conditions. The shape of the bubble-size distribution is represented in the evolution of the inverse quality factor but less distinct in the dispersion of the phase velocity. The presented, rigorous framework thus allows to predict what frequencies and acoustic properties relate to specific gas bubble sizes and whether respective signals may be detected with current apparatus.</jats:p><jats:p>This article is part of the theme issue ‘Wave generation and transmission in multi-scale complex media and structured metamaterials (part 2)’.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • dispersion
  • surface
  • phase
  • laser emission spectroscopy
  • metamaterial