People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Herrnsdorf, Johannes
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2020Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systemscitations
- 2020Gigabit per second visible light communication based on AlGaInP red micro-LED micro-transfer printed onto diamond and glasscitations
- 2019Hyperspectral imaging under low illumination with a single photon cameracitations
- 2019Gallium nitride micro-LED drive circuits for visible light communications
- 2017Design, fabrication and application of GaN-based micro-LED arrays with individual addressing by n-electrodescitations
- 2010Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomerscitations
- 2009Free-standing light-emitting organic nanocomposite membranes
Places of action
Organizations | Location | People |
---|
article
Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systems
Abstract
Gallium nitride-based light-emitting diodes (LEDs) have revolutionized the lighting industry with their efficient generation of blue and green light. While broad-area (square millimetre) devices have become the dominant LED lighting technology, fabricating LEDs into micro-scale pixels (micro-LEDs) yields further advantages for optical wireless communications (OWC), and for the development of smart-lighting applications such as tracking and imaging. The smaller active areas of micro-LEDs result in high current density operation, providing high modulation bandwidths and increased optical power density. Fabricating micro-LEDs in array formats allows device layouts to be tailored for target applications and provides additional degrees of freedom for OWC systems. Temporal and spatial control is crucial to use the full potential of these micro-scale sources, and is achieved by bonding arrays to pitch-matched complementary metal-oxide-semiconductor control electronics. These compact, integrated chips operate as digital-to-light converters, providing optical signals from digital inputs. Applying the devices as projection systems allows structured light patterns to be used for tracking and self-location, while simultaneously providing space-division multiple access communication links. The high-speed nature of micro-LED array devices, combined with spatial and temporal control, allows many modes of operation for OWC providing complex functionality with chip-scale devices.