Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pascalis, Riccardo De

  • Google
  • 3
  • 5
  • 89

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Soft metamaterials with dynamic viscoelastic functionality tuned by pre-deformation36citations
  • 2018The inflation of viscoelastic balloons and hollow viscera31citations
  • 2013Predicting the pressure-volume curve of an elastic microsphere composite22citations

Places of action

Chart of shared publication
Parnell, William J.
3 / 21 shared
Shearer, Tom
1 / 6 shared
Abrahams, I. David
2 / 10 shared
Grundy, David
1 / 2 shared
Daly, Donna
1 / 2 shared
Chart of publication period
2019
2018
2013

Co-Authors (by relevance)

  • Parnell, William J.
  • Shearer, Tom
  • Abrahams, I. David
  • Grundy, David
  • Daly, Donna
OrganizationsLocationPeople

article

Soft metamaterials with dynamic viscoelastic functionality tuned by pre-deformation

  • Parnell, William J.
  • Pascalis, Riccardo De
Abstract

The small amplitude dynamic response of materials can be tuned by employing inhomogeneous materials capable of large deformation. Soft materials generally exhibit viscoelastic behaviour, i.e. loss and frequency dependent effective properties however. This is the case for inhomogeneous materials even in the homogenisation limit when propagating wavelengths are much longer than phase lengthscales, since soft materials can possess long relaxation times. These media, possessing rich frequency-dependent behaviour over a wide range of low frequencies, can be termed metamaterials in modern terminology. The sub-class that are periodic are frequently termed soft phononic crystals although their strong dynamic behaviour usually depends on wavelengths being of the same order as the microstructure. In this paper we describe for the first time, how the effective loss and storage moduli associated with longitudinal waves in thin inhomogeneous rods are tuned by pre-stress. Phases are assumed to be quasi-linearly viscoelastic, thus exhibiting time-deformation separability in their constitutive response. We illustrate however that the effective response of the inhomogeneous medium does not exhibit time-deformation separability, and for a range of nonlinear materials it is shown that there is strong coupling between the frequency of the small amplitude longitudinal wave and initial large deformation.

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • metamaterial