People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lee, Koon-Yang
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Predicting filling efficiency of composite resin injection repaircitations
- 2021<i>Komagataeibacter</i> Tool Kit (KTK): A Modular Cloning System for Multigene Constructs and Programmed Protein Secretion from Cellulose Producing Bacteria.citations
- 2020Nanomaterials Derived from Fungal Sources-Is It the New Hype?citations
- 2020Upcycling Poultry Feathers with (Nano)cellulose:Sustainable Composites Derived from Nonwoven Whole Feather Preformscitations
- 2020High porosity cellulose nanopapers as reinforcement in multi-layer epoxy laminatescitations
- 2019Nanocellulose reinforced polymer composites: Computational analysis of structure-mechanical properties relationshipscitations
- 2019Cationic starch as strengthening agent in nanofibrillated and bacterial cellulose nanopapers
- 2019Nanomaterials Derived from Fungal Sources - Is It the New Hype?citations
- 2018Better togethercitations
- 2018Thinner and better: (Ultra-)low grammage bacterial cellulose nanopaper-reinforced polylactide composite laminates
- 2017Sample geometry dependency on the measured tensile properties of cellulose nanopaperscitations
- 2016Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solventscitations
- 2016Ductile unidirectional continuous rayon fibre-reinforced hierarchical compositescitations
- 2014Bacterial Cellulose Nanopaper as Reinforcement for Polylactide Compositescitations
- 2014Aligned unidirectional PLA/bacterial cellulose nanocomposite fibre reinforced PDLLA compositescitations
- 2014On the use of nanocellulose as reinforcement in polymer matrix compositescitations
- 2013Porous copolymers of ε-caprolactone as scaffolds for tissue engineeringcitations
- 2012Nano-fibrillated cellulose vs bacterial cellulose
- 2012Carbon Fiber: Properties, Testing, and Analysiscitations
- 2012Interfaces in Cross-Linked and Grafted Bacterial Cellulose/Poly(Lactic Acid) Resin Compositescitations
- 2012Nano-fibrillated cellulose vs bacterial cellulose:Reinforcing ability of nanocellulose obtained topdown or bottom-up
- 2009Renewable nanocomposite polymer foams synthesized from Pickering emulsion templatescitations
- 2009Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved propertiescitations
Places of action
Organizations | Location | People |
---|
article
Better together
Abstract
<p>Cellulose nanopapers have gained significant attention in recent years as large-scale reinforcement for high-loading cellulose nanocomposites, substrates for printed electronics and filter nanopapers for water treatment. The mechanical properties of nanopapers are of fundamental importance for all these applications. Cellulose nanopapers can simply be prepared by filtering a suspension of nanocellulose, followed by heat consolidation. It was already demonstrated that the mechanical properties of cellulose nanopapers can be tailored by the fineness of the fibrils used or by modifying nanocellulose fibrils for instance by polymer adsorption, but nanocellulose blends remain underexplored. In this work, we show that the mechanical and physical properties of cellulose nanopapers can be tuned by creating nanopapers from blends of various grades of nanocellulose, i.e. (mechanically refined) bacterial cellulose or cellulose nanofibrils extracted from never-dried bleached softwood pulp by chemical and mechanical pre-treatments. We found that nanopapers made from blends of two or three nanocellulose grades show synergistic effects resulting in improved stiffness, strength, ductility, toughness and physical properties.</p><p>This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.</p>