Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paxton, Anthony Thomas

  • Google
  • 10
  • 20
  • 397

Imperial College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2020Ising-like models for stacking faults in a free electron metal21citations
  • 2017Theoretical evaluation of the role of crystal defects on local equilibrium and effective diffusivity of hydrogen in iron27citations
  • 2017Hydrogen embrittlement II.38citations
  • 2013Analysis of a carbon dimer bound to a vacancy in iron using density functional theory and a tight binding model28citations
  • 2010Microscopic origin of channeled flow in lamellar titanium aluminide7citations
  • 2005Stability of Sr adatom model structures for SrTiO3(001) surface reconstructions25citations
  • 2005Theory of the near K-edge structure in electron energy loss spectroscopy9citations
  • 2004Bismuth embrittlement of copper is an atomic size effect180citations
  • 2001Material effects on stress-induced defect generation in trenched silicon-on-insulator structures10citations
  • 2000Effect of relaxation on the oxygen K-edge electron energy-loss near-edge structure in yttria-stabilized zirconia52citations

Places of action

Chart of shared publication
Pashov, Dimitar Lyubomirov
1 / 1 shared
Bombac, David
1 / 2 shared
Katsarov, Ivaylo Hristov
1 / 1 shared
Katsarov, Ivaylo H.
1 / 2 shared
Elsässer, C.
1 / 30 shared
Katsarov, Ivaylo
1 / 1 shared
Sánchez, C. G.
1 / 1 shared
Liborio, L. M.
1 / 1 shared
Finnis, M. W.
2 / 6 shared
Schweinfest, Rainer
1 / 1 shared
Finnis, Michael W.
1 / 1 shared
Mccann, P. A. C.
1 / 1 shared
Somasundram, K. A.
1 / 1 shared
Magee, S. B.
1 / 1 shared
Nevin, W. A. A. C.
1 / 1 shared
Ostanin, S.
1 / 7 shared
Mccomb, D. W.
1 / 7 shared
Vlachos, D.
1 / 3 shared
Craven, A. J.
1 / 6 shared
Alavi, A.
1 / 3 shared
Chart of publication period
2020
2017
2013
2010
2005
2004
2001
2000

Co-Authors (by relevance)

  • Pashov, Dimitar Lyubomirov
  • Bombac, David
  • Katsarov, Ivaylo Hristov
  • Katsarov, Ivaylo H.
  • Elsässer, C.
  • Katsarov, Ivaylo
  • Sánchez, C. G.
  • Liborio, L. M.
  • Finnis, M. W.
  • Schweinfest, Rainer
  • Finnis, Michael W.
  • Mccann, P. A. C.
  • Somasundram, K. A.
  • Magee, S. B.
  • Nevin, W. A. A. C.
  • Ostanin, S.
  • Mccomb, D. W.
  • Vlachos, D.
  • Craven, A. J.
  • Alavi, A.
OrganizationsLocationPeople

article

Ising-like models for stacking faults in a free electron metal

  • Paxton, Anthony Thomas
Abstract

<jats:p>We propose an extension of the axial next nearest neighbour Ising (ANNNI) model to a general number of interactions between spins. We apply this to the calculation of stacking fault energies in magnesium—particularly challenging due to the long-ranged screening of the pseudopotential by the free electron gas. We employ both density functional theory (DFT) using highest possible precision, and generalized pseudopotential theory (GPT) in the form of an analytic, long ranged, oscillating pair potential. At the level of first neighbours, the Ising model is reasonably accurate, but higher order terms are required. In fact, our ‘ AN<jats:sup><jats:italic>N</jats:italic></jats:sup>NI model’ is slow to converge—an inevitable feature of the free electron-like electronic structure. In consequence, the convergence and internal consistency of the AN<jats:sup><jats:italic>N</jats:italic></jats:sup>NI model is problematic within the most precise implementation of DFT. The GPT shows the convergence and internal consistency of the DFT bandstructure approach with electron temperature, but does not lead to loss of precision. The GPT is as accurate as a full implementation of DFT but carries the additional benefit that damping of the oscillations in the AN<jats:sup><jats:italic>N</jats:italic></jats:sup>NI model parameters are achieved without entailing error in stacking fault energies. We trace this to the logarithmic singularity of the Lindhard function.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • theory
  • Magnesium
  • Magnesium
  • density functional theory
  • stacking fault