Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Heisserer, U.

  • Google
  • 1
  • 7
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019A new technique for tensile testing of engineering materials and composites at high strain rates23citations

Places of action

Chart of shared publication
Tagarielli, V. L.
1 / 4 shared
Petrinic, N.
1 / 35 shared
Pellegrino, Antonio
1 / 29 shared
Morton, J.
1 / 4 shared
Duke, P. W.
1 / 1 shared
Curtis, P. T.
1 / 4 shared
Zhou, J.
1 / 38 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Tagarielli, V. L.
  • Petrinic, N.
  • Pellegrino, Antonio
  • Morton, J.
  • Duke, P. W.
  • Curtis, P. T.
  • Zhou, J.
OrganizationsLocationPeople

article

A new technique for tensile testing of engineering materials and composites at high strain rates

  • Tagarielli, V. L.
  • Petrinic, N.
  • Pellegrino, Antonio
  • Morton, J.
  • Duke, P. W.
  • Heisserer, U.
  • Curtis, P. T.
  • Zhou, J.
Abstract

<p>A new test technique and bespoke apparatus to conduct high strain rate measurements of the tensile response of materials are presented. The new test method is applicable to brittle solids and composites as well as high-performance fibres, yarns and tapes used in composite construction. In this study, the dynamic response of monolithic poly(methyl methacrylate) and unidirectional composites based on Dyneema<sup>®</sup> tape, Dyneema<sup>®</sup> SK75 yarn and Kevlar<sup>®</sup> 49 yarn are explored. The technique allows early force equilibrium and yields valid tensile stress-strain curves, which include part of the elastic material response. The new method also enables investigation of size effects in tape and yarn materials, allowing testing of specimens of arbitrary length.</p>

Topics
  • impedance spectroscopy
  • stress-strain curve
  • composite
  • tensile response