Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Manson, Graham

  • Google
  • 1
  • 3
  • 125

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Features for damage detection with insensitivity to environmental and operational variations125citations

Places of action

Chart of shared publication
Worden, Keith
1 / 6 shared
Cross, Elizabeth
1 / 1 shared
Pierce, Stephen
1 / 51 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Worden, Keith
  • Cross, Elizabeth
  • Pierce, Stephen
OrganizationsLocationPeople

article

Features for damage detection with insensitivity to environmental and operational variations

  • Worden, Keith
  • Manson, Graham
  • Cross, Elizabeth
  • Pierce, Stephen
Abstract

This paper explores and compares the application of three different approaches to the data normalization problem in structural health monitoring (SHM), which concerns the removal of confounding trends induced by varying perational conditions from a measured structural response that correlates with damage. The methodologies for singling out or creating damage-sensitive features that are insensitive to environmental influences explored here include cointegration, outlier analysis and an approach relying on principal component analysis. The application of cointegration is a new idea for SHM from the field of econometrics, and this is the first work in which it has been comprehensively applied to an SHM problem. Results when applying cointegration are compared with results from the more familiar outlier analysis and an approach that uses minor principal components. The ability of these methods for removing the effects of environmental/operational variations from damage-sensitive features is demonstrated and compared with benchmark data from the Brite-Euram project DAMASCOS (BE97 4213), which was collected from a Lamb-wave inspection of a composite panel subject to temperature variations in an environmental chamber.

Topics
  • impedance spectroscopy
  • composite