Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cox, Sophie C.

  • Google
  • 18
  • 86
  • 705

University of Birmingham

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2024A genetic algorithm optimization framework for the characterization of hyper-viscoelastic materialscitations
  • 2023Tailoring absorptivity of highly reflective Ag powders by pulsed-direct current magnetron sputtering for additive manufacturing processes7citations
  • 2023Tailoring absorptivity of highly reflective Ag powders by pulsed-direct current magnetron sputtering for additive manufacturing processes7citations
  • 2022Surface Free Energy Dominates the Biological Interactions of Postprocessed Additively Manufactured Ti-6Al-4V23citations
  • 2022Controlled Release of Epigenetically-Enhanced Extracellular Vesicles from a GelMA/Nanoclay Composite Hydrogel to Promote Bone Repair55citations
  • 2022The influence of thermal oxidation on the microstructure, fatigue properties, tribological and in vitro behaviour of laser powder bed fusion manufactured Ti-34 Nb-13Ta-5Zr-0.2O alloy5citations
  • 2022Development, characterisation, and modelling of processability of nitinol stents using laser powder bed fusion55citations
  • 2022Photocurable antimicrobial silk-based hydrogels for corneal repair16citations
  • 2021Surface finish of additively manufactured metals5citations
  • 2021Biofilm viability checker86citations
  • 2020Optimizing the antimicrobial performance of metallic glass composites through surface texturing8citations
  • 2020Selective laser melting of Ti-6Al-4V: the impact of post-processing on the tensile, fatigue and biological properties for medical implant applications108citations
  • 2020Selective laser melting of ti-6al-4v108citations
  • 2019Dynamic viscoelastic characterisation of human osteochondral tissue26citations
  • 2018Formulation and viscoelasticity of mineralised hydrogels for use in bone-cartilage interfacial reconstruction9citations
  • 2018The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores38citations
  • 2018Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels71citations
  • 2016Adding functionality with additive manufacturing : fabrication of titanium-based antibiotic eluting implants78citations

Places of action

Chart of shared publication
Espino, Daniel M.
2 / 5 shared
Jones, Simon
3 / 5 shared
Allen, Piers
2 / 3 shared
Carter, Luke N.
4 / 12 shared
Wadge, Matthew D.
2 / 10 shared
Kudrynskyi, Zakhar R.
2 / 5 shared
Clare, Adam T.
2 / 18 shared
Grover, Liam, M.
6 / 10 shared
Ahmed, Ifty
2 / 28 shared
Reynolds, William J.
2 / 2 shared
Cooper, Timothy P.
2 / 5 shared
Grant, David M.
2 / 27 shared
Felfel, Reda M.
2 / 11 shared
Speidel, Alistair
2 / 8 shared
Rabbitt, Daisy
2 / 2 shared
Grover, Liam M.
3 / 11 shared
Lowther, Morgan
1 / 2 shared
Hoey, David A.
2 / 2 shared
Addison, Owen
4 / 43 shared
Webber, Mark A.
2 / 2 shared
Shepherd, Duncan Et
4 / 24 shared
Colavita, Paula E.
1 / 3 shared
Attallah, Moataz Moataz
6 / 96 shared
Schröder, Christian
1 / 12 shared
Puzas, Victor Manuel Villapun
1 / 1 shared
Brunet, Mathieu Y.
1 / 1 shared
Barroso, Inês A.
2 / 2 shared
Federici, Angelica S.
1 / 1 shared
Peacock, Ben
1 / 1 shared
Man, Kenny
2 / 2 shared
Kong, Weihuan
3 / 4 shared
Lu, Yu
1 / 17 shared
Kuang, Min
1 / 1 shared
Villapun Puzas, Victor Manuel
5 / 5 shared
Feng, Jiling
1 / 1 shared
Langi, Enzoh
1 / 6 shared
Jamshidi, Parastoo
5 / 10 shared
Panwisawas, Chinnapat
1 / 22 shared
Zhao, Liguo
1 / 13 shared
Hall, Thomas J.
1 / 1 shared
Robinson, Thomas E.
1 / 1 shared
Louth, Sophie E. T.
1 / 1 shared
Ghag, Anita
1 / 1 shared
Lobo, David
1 / 2 shared
Riva, Leonardo
1 / 1 shared
Ginestra, Paola
1 / 3 shared
Mountcastle, Sophie
2 / 2 shared
Ceretti, Elisabetta
1 / 18 shared
Webber, Mark
1 / 2 shared
Shelton, Richard
1 / 8 shared
Sammons, Rachel
1 / 7 shared
Kuehne, Sarah
1 / 4 shared
Walmsley, Anthony Damien
1 / 5 shared
Vyas, Nina
1 / 2 shared
Jabbari, Sara
1 / 1 shared
Qu, Bokun
1 / 2 shared
Thompson, Jonathan R.
1 / 2 shared
Dover, L. G.
1 / 2 shared
Hoerdemann, C.
1 / 3 shared
Lund, Peter
1 / 2 shared
Adesina, Janet O.
1 / 2 shared
Wei, W.
1 / 5 shared
González, S.
1 / 16 shared
Attallah, Moataz M.
2 / 10 shared
Aristizabal, Miren
2 / 3 shared
Villapun, Victor
1 / 2 shared
Cooke, Megan E.
1 / 2 shared
Lavecchia, Carolina E.
1 / 1 shared
Fell, Natasha L. A.
1 / 1 shared
Mountcastle, Sophie E.
1 / 1 shared
Mellors, Ben O. L.
1 / 1 shared
Lawless, Bernard M.
1 / 1 shared
Lawless, Bernard Michael
1 / 1 shared
Majumdar, Trina
1 / 1 shared
Hughes, Erik
1 / 1 shared
Cooke, Megan
1 / 2 shared
Bellier, Francis
1 / 1 shared
Fell, N. L. A.
1 / 1 shared
Espino, D. M.
1 / 2 shared
Cooke, M. E.
1 / 1 shared
Eisenstein, N. M.
1 / 1 shared
Lawless, B. M.
1 / 1 shared
Hassanin, Hany
2 / 19 shared
Finet, Laurane
1 / 2 shared
Shepherd, Duncan E. T.
1 / 1 shared
Eisenstein, Neil M.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2016

Co-Authors (by relevance)

  • Espino, Daniel M.
  • Jones, Simon
  • Allen, Piers
  • Carter, Luke N.
  • Wadge, Matthew D.
  • Kudrynskyi, Zakhar R.
  • Clare, Adam T.
  • Grover, Liam, M.
  • Ahmed, Ifty
  • Reynolds, William J.
  • Cooper, Timothy P.
  • Grant, David M.
  • Felfel, Reda M.
  • Speidel, Alistair
  • Rabbitt, Daisy
  • Grover, Liam M.
  • Lowther, Morgan
  • Hoey, David A.
  • Addison, Owen
  • Webber, Mark A.
  • Shepherd, Duncan Et
  • Colavita, Paula E.
  • Attallah, Moataz Moataz
  • Schröder, Christian
  • Puzas, Victor Manuel Villapun
  • Brunet, Mathieu Y.
  • Barroso, Inês A.
  • Federici, Angelica S.
  • Peacock, Ben
  • Man, Kenny
  • Kong, Weihuan
  • Lu, Yu
  • Kuang, Min
  • Villapun Puzas, Victor Manuel
  • Feng, Jiling
  • Langi, Enzoh
  • Jamshidi, Parastoo
  • Panwisawas, Chinnapat
  • Zhao, Liguo
  • Hall, Thomas J.
  • Robinson, Thomas E.
  • Louth, Sophie E. T.
  • Ghag, Anita
  • Lobo, David
  • Riva, Leonardo
  • Ginestra, Paola
  • Mountcastle, Sophie
  • Ceretti, Elisabetta
  • Webber, Mark
  • Shelton, Richard
  • Sammons, Rachel
  • Kuehne, Sarah
  • Walmsley, Anthony Damien
  • Vyas, Nina
  • Jabbari, Sara
  • Qu, Bokun
  • Thompson, Jonathan R.
  • Dover, L. G.
  • Hoerdemann, C.
  • Lund, Peter
  • Adesina, Janet O.
  • Wei, W.
  • González, S.
  • Attallah, Moataz M.
  • Aristizabal, Miren
  • Villapun, Victor
  • Cooke, Megan E.
  • Lavecchia, Carolina E.
  • Fell, Natasha L. A.
  • Mountcastle, Sophie E.
  • Mellors, Ben O. L.
  • Lawless, Bernard M.
  • Lawless, Bernard Michael
  • Majumdar, Trina
  • Hughes, Erik
  • Cooke, Megan
  • Bellier, Francis
  • Fell, N. L. A.
  • Espino, D. M.
  • Cooke, M. E.
  • Eisenstein, N. M.
  • Lawless, B. M.
  • Hassanin, Hany
  • Finet, Laurane
  • Shepherd, Duncan E. T.
  • Eisenstein, Neil M.
OrganizationsLocationPeople

article

A genetic algorithm optimization framework for the characterization of hyper-viscoelastic materials

  • Espino, Daniel M.
  • Jones, Simon
  • Allen, Piers
  • Cox, Sophie C.
Abstract

This study aims to develop an automated framework for the characterization of materials which are both hyper-elastic and viscoelastic. This has been evaluated using human articular cartilage (AC). AC (26 tissue samples from 5 femoral heads) underwent dynamic mechanical analysis with a frequency sweep from 1 to 90 Hz. The conversion from a frequency- to time-domain hyper-viscoelastic material model was approximated using a modular framework design where finite element analysis was automated, and a genetic algorithm and interior point technique were employed to solve and optimize the material approximations. Three orders of approximation for the Prony series were evaluated at N = 1, 3 and 5 for 20 and 50 iterations of a genetic cycle. This was repeated for 30 simulations of six combinations of the above all with randomly generated initialization points. There was a difference between N = 1 and N = 3/5 of approximately ~5% in terms of the error estimated. During unloading the opposite was seen with a 10% error difference between N = 5 and 1. A reduction of ~1% parameter error was found when the number of generations increased from 20 to 50. In conclusion, the framework has proved effective in characterizing human AC.

Topics
  • simulation
  • finite element analysis
  • dynamic mechanical analysis