People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bhat, Ninad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Inverse design of aluminium alloys using multi-targeted regressioncitations
- 2024Inverse Design of Aluminium Alloys Using Genetic Algorithmcitations
- 2023Improving the prediction of mechanical properties of aluminium alloy using data-driven class-based regressioncitations
- 2023Unsupervised machine learning discovers classes in aluminium alloyscitations
Places of action
Organizations | Location | People |
---|
article
Unsupervised machine learning discovers classes in aluminium alloys
Abstract
<jats:p>Aluminium (Al) alloys are critical to many applications. Although Al alloys have been commercially widespread for over a century, their development has predominantly taken a trial-and-error approach. Furthermore, many discrete studies regarding Al alloys, often application specific, have precluded a broader consolidation of Al alloy classification. Iterative label spreading (ILS), an unsupervised machine learning approach, was used to identify the different classes of Al alloys, drawing from a specifically curated dataset of 1154 Al alloys (including alloy composition and processing conditions). Using ILS, eight classes of Al alloys were identified based on a comprehensive feature set under two descriptors. Further, a decision tree classifier was used to validate the separation of classes.</jats:p>