People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Greco, Gabriele
Swedish University of Agricultural Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Multiscale static and dynamic mechanical study of the <i>Turritella terebra</i> and <i>Turritellinella tricarinata</i> seashellscitations
- 2022Impact of physio-chemical spinning conditions on the mechanical properties of biomimetic spider silk fiberscitations
- 2022Impact of physio-chemical spinning conditions on the mechanical properties of biomimetic spider silk fibers
- 2022Magnetostrictive and Electroconductive Stress‐Sensitive Functional Spider Silkcitations
- 2022Prey localization in spider orb webs using modal vibration analysiscitations
- 2020Strong and tough silk for resilient attachment discscitations
Places of action
Organizations | Location | People |
---|
article
Multiscale static and dynamic mechanical study of the <i>Turritella terebra</i> and <i>Turritellinella tricarinata</i> seashells
Abstract
<jats:p>Marine shells are designed by nature to ensure mechanical protection from predators and shelter for molluscs living inside them. A large amount of work has been done to study the multiscale mechanical properties of their complex microstructure and to draw inspiration for the design of impact-resistant biomimetic materials. Less is known regarding the dynamic behaviour related to their structure at multiple scales. Here, we present a combined experimental and numerical study of the shells of two different species of gastropod sea snail belonging to the Turritellidae family, featuring a peculiar helicoconic shape with hierarchical spiral elements. The proposed procedure involves the use of micro-computed tomography scans for the accurate determination of geometry, atomic force microscopy and nanoindentation to evaluate local mechanical properties, surface morphology and heterogeneity, as well as resonant ultrasound spectroscopy coupled with finite element analysis simulations to determine global modal behaviour. Results indicate that the specific features of the considered shells, in particular their helicoconic and hierarchical structure, can also be linked to their vibration attenuation behaviour. Moreover, the proposed investigation method can be extended to the study of other natural systems, to determine their structure-related dynamic properties, ultimately aiding the design of bioinspired metamaterials and of structures with advanced vibration control.</jats:p>