People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Zhibing
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2017Contact mechanics of the human finger pad under compressive loadscitations
- 2013Structure and mechanical properties of consumer-friendly PMMA microcapsulescitations
- 2012Failure of elastic-plastic core-shell microcapsules under compressioncitations
- 2012Manufacturing of agarose-based chromatographic adsorbents – effect of ionic strength and cooling conditions on particle structure and mechanical strengthcitations
- 2012Manufacturing of agarose-based chromatographic adsorbents with controlled pore and particle sizes
- 2011Manufacturing of agarose-based chromatographic adsorbents with controlled pore and particle size
- 2011Measuring the mechanical properties of single microbial cells.citations
Places of action
Organizations | Location | People |
---|
article
Contact mechanics of the human finger pad under compressive loads
Abstract
The coefficient of friction of most solid objects is independent of the applied normal force because of surface roughness. This behaviour is observed for a finger pad except at long contact times (> 10 s) against smooth impermeable surfaces such as glass when the coefficient increases with decreasing normal force by about a factor of five for the load range investigated here. This is clearly an advantage for some precision manipulation and grip tasks. Such normal force dependence is characteristic of smooth curved elastic bodies. It has been argued that the occlusion of moisture in the form of sweat plasticises the surface topographical features and their increased compliance allows flattening under an applied normal force so that the surfaces of the fingerprint ridges are effectively smooth. While the normal force dependence of the friction is consistent with the theory of elastic frictional contacts, the gross deformation behaviour is not and, for commonly reported values of the Young’s modulus of stratum corneum, the deformation of the ridges should be negligible compared with the gross deformation of the finger pad even when fully-occluded. The current paper describes the development of a contact mechanics model that resolves these inconsistencies and is validated against experimental data.