People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chrzanowski, Wojciech
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2014Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineeringcitations
- 2010Tailoring Cell Behavior on Polymers by the Incorporation of Titanium Doped Phosphate Glass Fillercitations
- 2010<i>In vitro</i> studies on the influence of surface modification of Ni–Ti alloy on human bone cellscitations
- 2009Structure and properties of strontium-doped phosphate-based glassescitations
- 2009Incorporation of vitamin E in poly(3hydroxybutyrate)/Bioglass composite films: effect on surface properties and cell attachment.citations
- 2009Doping of a high calcium oxide metaphosphate glass with titanium dioxidecitations
- 2008Nanomechanical evaluation of nickel–titanium surface properties after alkali and electrochemical treatmentscitations
- 2008Chemical, Corrosion and Topographical Analysis of Stainless Steel Implants after Different Implantation Periodscitations
Places of action
Organizations | Location | People |
---|
article
Incorporation of vitamin E in poly(3hydroxybutyrate)/Bioglass composite films: effect on surface properties and cell attachment.
Abstract
This study investigated the possibility of incorporating alpha-tocopherol (vitamin E) into poly(3hydroxybutyrate) (P(3HB))/Bioglass composites, which are being developed for bone tissue engineering matrices. P(3HB) films with 20 wt% Bioglass and 10 wt% vitamin E were prepared using the solvent casting technique. Addition of vitamin E significantly improved the hydrophilicity of the composites along with increasing the total protein adsorption. The presence of protein adsorbed on the composite surface was further confirmed using X-ray photoelectron spectroscopy analysis. Preliminary cell culture studies using MG-63 human osteoblasts showed that the addition of vitamin E in the P(3HB)/20 wt% Bioglass films significantly increased cell proliferation. The results achieved in this study confirmed the possibility of incorporating vitamin E as a suitable additive in P(3HB)/Bioglass composites to engineer the surface of the composites by promoting higher protein adsorption and increasing the hydrophilicity.