Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Roszkowska, Anna Maria

  • Google
  • 1
  • 8
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Accuracy of an Air-Puff Dynamic Tonometry Biomarker to Discriminate the Corneal Biomechanical Response in Patients With Keratoconus2citations

Places of action

Chart of shared publication
Bernava, Giuseppe Massimo
1 / 1 shared
Lombardo, Marco
1 / 1 shared
Alunni-Fegatelli, Danilo
1 / 1 shared
Serrao, Sebastiano
1 / 1 shared
Mencucci, Rita
1 / 1 shared
Vestri, Annarita
1 / 1 shared
Lombardo, Giuseppe
1 / 2 shared
Aleo, Danilo
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Bernava, Giuseppe Massimo
  • Lombardo, Marco
  • Alunni-Fegatelli, Danilo
  • Serrao, Sebastiano
  • Mencucci, Rita
  • Vestri, Annarita
  • Lombardo, Giuseppe
  • Aleo, Danilo
OrganizationsLocationPeople

article

Accuracy of an Air-Puff Dynamic Tonometry Biomarker to Discriminate the Corneal Biomechanical Response in Patients With Keratoconus

  • Bernava, Giuseppe Massimo
  • Lombardo, Marco
  • Alunni-Fegatelli, Danilo
  • Roszkowska, Anna Maria
  • Serrao, Sebastiano
  • Mencucci, Rita
  • Vestri, Annarita
  • Lombardo, Giuseppe
  • Aleo, Danilo
Abstract

<jats:sec><jats:title>Purpose:</jats:title><jats:p>The aim of this study was to assess accuracy of the <jats:italic toggle="yes">mean corneal stiffness</jats:italic> (<jats:italic toggle="yes">k</jats:italic><jats:sub>c</jats:sub>, N/m) parameter to discriminate between patients with keratoconus and age-matched healthy subjects.</jats:p></jats:sec><jats:sec><jats:title>Methods:</jats:title><jats:p>Dynamic Scheimpflug imaging tonometry was performed with Corvis ST (Oculus Optikgeräte GmbH, Germany) in patients with keratoconus (n = 24; study group) and age-matched healthy subjects (n = 32; control). An image processing algorithm was developed to analyze the video sequence of the Corvis ST air-puff event and to determine the geometric and temporal parameters that correlated with the corneal tissue biomechanical properties. A modified 3-element viscoelastic model was used to derive the <jats:italic toggle="yes">k</jats:italic><jats:sub>c</jats:sub> parameter, which represented the corneal tissue resistance to deformation under load. Receiver operating characteristic curves were used to assess the overall diagnostic performance for determining the area under the curve, sensitivity, and specificity of the <jats:italic toggle="yes">k</jats:italic><jats:sub>c</jats:sub> in assessing the corneal tissue deformation to the Corvis ST air-puff event in keratoconus and control eyes. The <jats:italic toggle="yes">Corvis Biomechanical Index</jats:italic> (<jats:italic toggle="yes">CBI</jats:italic>) was analyzed for external validation.</jats:p></jats:sec><jats:sec><jats:title>Results:</jats:title><jats:p>The <jats:italic toggle="yes">k</jats:italic><jats:sub>c</jats:sub> parameter was significantly different between keratoconus and controls (<jats:italic toggle="yes">P</jats:italic> &lt; 0.001), ranging from 24.9 ±3.0 to 34.2 ±3.5 N/m, respectively. It was highly correlated with <jats:italic toggle="yes">CBI</jats:italic> (r = −0.69; <jats:italic toggle="yes">P</jats:italic> &lt; 0.001); however, the <jats:italic toggle="yes">k</jats:italic><jats:sub>c</jats:sub> parameter had greater specificity (94%) than <jats:italic toggle="yes">CBI</jats:italic> (75%), whereas the 2 biomarkers had similar area under the curve (0.98 vs. 0.94) and sensitivity (96% vs. 92%) in predicting the occurrence of keratoconus.</jats:p></jats:sec><jats:sec><jats:title>Conclusions:</jats:title><jats:p>The <jats:italic toggle="yes">k</jats:italic><jats:sub>c</jats:sub> parameter extracted by video processing analysis of dynamic Scheimpflug tonometry data was highly accurate in discriminating patients with clinically manifest keratoconus compared with controls.</jats:p></jats:sec>

Topics
  • size-exclusion chromatography