Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Østergaard, Jan

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Effects of Background Noise and Linguistic Violations on Frontal Theta Oscillations During Effortful Listening2citations

Places of action

Chart of shared publication
Manresa, José Biurrun
1 / 1 shared
Graversen, Carina
1 / 2 shared
Andersen, Ole Kæseler
1 / 1 shared
Mohammadi, Yousef
1 / 5 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Manresa, José Biurrun
  • Graversen, Carina
  • Andersen, Ole Kæseler
  • Mohammadi, Yousef
OrganizationsLocationPeople

article

Effects of Background Noise and Linguistic Violations on Frontal Theta Oscillations During Effortful Listening

  • Manresa, José Biurrun
  • Graversen, Carina
  • Andersen, Ole Kæseler
  • Østergaard, Jan
  • Mohammadi, Yousef
Abstract

<jats:sec><jats:title>Objectives:</jats:title><jats:p>Background noise and linguistic violations have been shown to increase the listening effort. The present study aims to examine the effects of the interaction between background noise and linguistic violations on subjective listening effort and frontal theta oscillations during effortful listening.</jats:p></jats:sec><jats:sec><jats:title>Design:</jats:title><jats:p>Thirty-two normal-hearing listeners participated in this study. The linguistic violation was operationalized as sentences versus random words (strings). Behavioral and electroencephalography data were collected while participants listened to sentences and strings in background noise at different signal to noise ratios (SNRs) (−9, −6, −3, 0 dB), maintained them in memory for about 3 sec in the presence of background noise, and then chose the correct sequence of words from a base matrix of words.</jats:p></jats:sec><jats:sec><jats:title>Results:</jats:title><jats:p>Results showed the interaction effects of SNR and speech type on effort ratings. Although strings were inherently more effortful than sentences, decreasing SNR from 0 to –9 dB (in 3 dB steps), increased effort rating more for sentences than strings in each step, suggesting the more pronounced effect of noise on sentence processing that strings in low SNRs. Results also showed a significant interaction between SNR and speech type on frontal theta event-related synchronization during the retention interval. This interaction indicated that strings exhibited higher frontal theta event-related synchronization than sentences at SNR of 0 dB, suggesting increased verbal working memory demand for strings under challenging listening conditions.</jats:p></jats:sec><jats:sec><jats:title>Conclusions:</jats:title><jats:p>The study demonstrated that the interplay between linguistic violation and background noise shapes perceived effort and cognitive load during speech comprehension under challenging listening conditions. The differential impact of noise on processing sentences versus strings highlights the influential role of context and cognitive resource allocation in the processing of speech.</jats:p></jats:sec>

Topics
  • random
  • size-exclusion chromatography