Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hameed, S. M.

  • Google
  • 2
  • 10
  • 632

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Characteristics of Earth Electrodes Under High Frequency Conditions: Numerical Modelling4citations
  • 2004Hand-held thoracic sonography for detecting post-traumatic pneumothoraces628citations

Places of action

Chart of shared publication
Hamilton, D. R.
1 / 1 shared
Rowan, K.
1 / 1 shared
Nicolaou, S.
1 / 1 shared
Ball, C. G.
1 / 1 shared
Simons, R.
1 / 1 shared
Dulchavsky, S. A.
1 / 1 shared
Brown, R.
1 / 11 shared
Liu, D.
1 / 37 shared
Kirkpatrick, Andrew W.
1 / 1 shared
Sirois, M.
1 / 1 shared
Chart of publication period
2020
2004

Co-Authors (by relevance)

  • Hamilton, D. R.
  • Rowan, K.
  • Nicolaou, S.
  • Ball, C. G.
  • Simons, R.
  • Dulchavsky, S. A.
  • Brown, R.
  • Liu, D.
  • Kirkpatrick, Andrew W.
  • Sirois, M.
OrganizationsLocationPeople

article

Hand-held thoracic sonography for detecting post-traumatic pneumothoraces

  • Hamilton, D. R.
  • Rowan, K.
  • Nicolaou, S.
  • Ball, C. G.
  • Simons, R.
  • Dulchavsky, S. A.
  • Brown, R.
  • Liu, D.
  • Kirkpatrick, Andrew W.
  • Hameed, S. M.
  • Sirois, M.
Abstract

<p>Background: Thoracic ultrasound (EFAST) has shown promise in inferring the presence of post-traumatic pneumothoraces (PTXs) and may have a particular value in identifying occult pneumothoraces (OPTXs) missed by the AP supine chest radiograph (CXR). However, the diagnostic utility of hand-held US has not been previously evaluated in this role. Methods: Thoracic US examinations were performed during the initial resuscitation of injured patients at a provincial trauma referral center. A high frequency linear transducer and a 2.4 kg US attached to a video-recorder were used. Real-time EFAST examinations for PTXs were blindly compared with the subsequent results of CXRs, a composite standard (CXR, chest and abdominal CT scans, clinical course, and invasive interventions), and a CT gold standard (CT only). Charts were reviewed for in-hospital outcomes and follow-up. Results: There were 225 eligible patients (207 blunt, 18 penetrating); 17 were excluded from the US examination because of battery failure or a lost probe. Sixty-five (65) PTXs were detected in 52 patients (22% of patients), 41 (63%) being occult to CXR in 33 patients (14.2% whole population, 24.6% of those with a CT). The US and CXR agreed in 186 (89.4%) of patients, EFAST was better in 16 (7.7%), and CXR better in 6 (2.9%). Compared with the composite standard, the sensitivity of EFAST was 58.9% with a likelihood ratio of a positive test (LR+) of 69.7 and a specificity of 99.1%. Comparing EFAST directly to CXR, by looking at each of 266 lung fields with the benefit of the CT gold standard, the EFAST showed higher sensitivity over CXR (48.8% versus 20.9%). Both exams had a very high specificity (99.6% and 98.7%), and very predictive LR+ (46.7 and 36.3). Conclusion: EFAST has comparable specificity to CXR but is more sensitive for the detection of OPTXs after trauma. Positive EFAST findings should be addressed either clinically or with CT depending on hemodynamic stability. CT should be used if detection of all PTXs is desired.</p>

Topics
  • impedance spectroscopy
  • gold
  • composite
  • computed tomography scan