Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Echemendía, A. L.

  • Google
  • 2
  • 13
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2002Macroptilium yellow mosaic virus, a New Begomovirus Infecting <i>Macroptilium lathyroides</i> in Cuba11citations
  • 2001Cuban Isolate of <i>Bean golden yellow mosaic virus</i> is a Member of the Mesoamerican BGYMV Group9citations

Places of action

Chart of shared publication
Ramos, P. L.
2 / 2 shared
Peral, R.
2 / 2 shared
Fuentes, A.
2 / 2 shared
Pujol, M.
1 / 1 shared
Ascencio-Ibañez, J. T.
1 / 1 shared
Fernández, A.
1 / 15 shared
Rivera-Bustamante, R.
1 / 1 shared
Castrillo, G.
1 / 1 shared
Díaz, L.
1 / 1 shared
Arguello-Astorga, G.
1 / 1 shared
Morales, F.
1 / 6 shared
Sanpedro, J.
1 / 1 shared
González, G.
1 / 7 shared
Chart of publication period
2002
2001

Co-Authors (by relevance)

  • Ramos, P. L.
  • Peral, R.
  • Fuentes, A.
  • Pujol, M.
  • Ascencio-Ibañez, J. T.
  • Fernández, A.
  • Rivera-Bustamante, R.
  • Castrillo, G.
  • Díaz, L.
  • Arguello-Astorga, G.
  • Morales, F.
  • Sanpedro, J.
  • González, G.
OrganizationsLocationPeople

article

Cuban Isolate of <i>Bean golden yellow mosaic virus</i> is a Member of the Mesoamerican BGYMV Group

  • Ramos, P. L.
  • Peral, R.
  • Fuentes, A.
  • Echemendía, A. L.
  • Morales, F.
  • Sanpedro, J.
  • González, G.
Abstract

<jats:p> In Cuba, the emergence of bean golden mosaic was associated with high populations of Bemisia tabaci in common bean (Phaseolus vulgaris L.) plantings in the 1970s (1). During the last two decades, the disease has caused significant economic losses, forcing some growers to abandon bean production. In Holguín, one of the main bean producing provinces of the country, about 2,000 ha of beans were abandoned in 1991 due to the high incidence of this whitefly-transmitted virus. At that time, yield losses associated with this disease reached 90 to 100% in farmer's fields. In spite of various control measures, the disease affected 33, 28, and 6.5% of the total area planted in Cuba to common bean in 1990, 1992, and 1996, respectively. For this investigation, common bean leaves showing systemic yellowing symptoms were collected in fields located in the provinces of Havana, Matanzas, and Holguín during 1998-1999. Sap and total DNA leaf extracts were used to inoculate healthy bean plants by manual and biolistic procedures, respectively. Characteristic yellowing symptoms were more efficiently reproduced using a particle gun device than by manual inoculation (18/20 plants and 5/20 plants, respectively, for a Holguín virus isolate). DNA extracts were further analyzed by polymerase chain reaction using two degenerate primer sets: PAL1v1978-PAR1c715 and PAL1c1960-PAR1v722 (2). Fragments of approximately 1.4 and 1.2 kb were amplified and cloned. Restriction fragment length polymorphism analysis of the cloned 1.4-kb fragments was performed with BglII, HincII, SalI, EcoRI, PstI, and XbaI, indicating that selected isolates from the three Cuban provinces shared identical restriction patterns. The nucleotide sequence obtained from two clones of a virus isolate from Holguín, was compared to sequences available for other begomoviruses using BLAST. The Cuban isolate shared up to 94% nt sequence identity with various strains of Bean golden yellow mosaic virus (BGYMV) in the first 250 nt of the rep gene. For the common region (CR), scores were 93% for BGYMV-GA (Guatemala), 92% for BGYMV-MX (southern Mexico) and BGYMV-PR (Puerto Rico), and 91% for BGYMV-DR (Dominican Republic). The iterative sequence ATGGAG was identified in the CR of the Cuban BGYMV isolate, as reported for other BGYMV isolates. Finally, the Cuban begomovirus, hereafter referred to as BGYMV-CU, shared nt and aa sequence identities of 94 and 100%, respectively, with the coat protein gene of BGYMV-MX. We conclude that the begomovirus isolated from mosaic-affected common bean plants in the province of Holguín is a member of the Mesoamerican BGYMV group (3). </jats:p><jats:p> References: (1) N. Blanco and C. Bencomo. Cienc. Agric. 2:39, 1978. (2) M. R. Rojas et al. Plant Dis. 77:340, 1993. (3) Morales and Anderson, Arch. Virol. 146:415, 2001. </jats:p>

Topics
  • impedance spectroscopy